Angelica keiskei leaves extract attenuates psychosocial stress in overcrowding-subjected rats

Ferbian Milas Siswanto   

Open Access   

Published:  Sep 13, 2024

DOI: 10.7324/JAPS.2024.197137
Abstract

Angelica keiskei is currently used as a popular functional food with various beneficial effects, including antioxidant, anti-obesity, anti-tumor, anti-diabetic, and anti-bacterial. A recent in vitro study reported that A. keiskei inhibits monoamine oxidases (MAOs), suggesting the antidepressant property of A. keiskei. However, in vivo studies on laboratory animals subjected to psychosocial stress have not been conducted. In this study, the effects of an A. keiskei leaf extract (AKE) on rats undergoing chronic social overcrowding stress were explored. Six-month-old male and female Wistar rats were housed in groups of three in 12 × 12 × 18 cm cages (overcrowding) for 28 days. Both male and female rats were divided into two groups (N = 10); the control group received oral distilled water, while the other group (treatment group) received 20 mg/kgBW/day of AKE supplementation. The results showed that AKE-treated rats exhibited lower anxiety- and depressive-related behaviors than that of control-stressed rats. AKE significantly decreased corticosterone and increased testosterone and estrogen levels in stressed rats. Additionally, brain tissue malondialdehyde and TNF-alpha levels were reduced, while brain neurotransmitter 5-hydroxytryptamine and antioxidant superoxide dismutase levels were elevated by the AKE. These findings suggest, for the first time, that AKE could alleviate overcrowding stress-induced behavioral, neuroendocrine, antioxidant, and inflammatory dysfunctions. AKE extract could potentially be used as an agonist to reduce stress and depression.


Keyword:     Angelica keiskei leaves extract depression psychosocial stress Wistar rats


Citation:

Siswanto FM. Angelica keiskei leaves extract attenuates psychosocial stress in overcrowding-subjected rats. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.197137

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: a review. EXCLI J. 2017;16:1057–72. doi: https://doi.org/10.17179/excli2017-480

2. James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol (Lausanne). 2023;14:1085950. doi: https://doi.org/10.3389/fendo.2023.1085950

3. Kogler L, Müller VI, Chang A, Eickhoff SB, Fox PT, Gur RC, et al. Psychosocial versus physiological stress—meta-analyses on deactivations and activations of the neural correlates of stress reactions. Neuroimage. 2015;119:235–51. doi: https://doi.org/10.1016/j.neuroimage.2015.06.059

4. Yegorov YE, Poznyak AV, Nikiforov NG, Sobenin IA, Orekhov AN. The link between chronic stress and accelerated aging. Biomedicines. 2020;8:198. doi: https://doi.org/10.3390/biomedicines8070198

5. Richter-Levin G, Xu L. How could stress lead to major depressive disorder? IBRO Rep. 2018;4:38–43. doi: https://doi.org/10.1016/j.ibror.2018.04.001

6. Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm. 2019;126:1383–408. doi: https://doi.org/10.1007/s00702-019-02084-y

7. Chen X, Gianferante D, Hanlin L, Fiksdal A, Breines JG, Thoma MV, et al. HPA-axis and inflammatory reactivity to acute stress is related with basal HPA-axis activity. Psychoneuroendocrinology. 2017;78:168–76. doi: https://doi.org/10.1016/j.psyneuen.2017.01.035

8. Xia F, Wang N, Han B, Li Q, Chen Y, Zhu C, et al. Hypothalamic-pituitary-gonadal axis in aging men and women: increasing total testosterone in aging men. Neuroendocrinology. 2017;104:291–301. doi: https://doi.org/10.1159/000446656

9. Bhatta S, Blair JA, Casadesus G. Luteinizing hormone involvement in aging female cognition: not all is estrogen loss. Front Endocrinol (Lausanne). 2018;9:544. doi: https://doi.org/10.3389/fendo.2018.00544

10. Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140:774–815. doi: https://doi.org/10.1037/a0035302

11. Brymer KJ, Romay-Tallon R, Allen J, Caruncho HJ, Kalynchuk LE. Exploring the potential antidepressant mechanisms of TNFα antagonists. Front Neurosci. 2019;13:98. doi: https://doi.org/10.3389/fnins.2019.00098

12. Correia AS, Cardoso A, Vale N. Oxidative stress in depression: the link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants. 2023;12:470. doi: https://doi.org/10.3390/antiox12020470

13. Uarquin DG, Meyer JS, Cardenas FP, Rojas MJ. Effect of overcrowding on hair corticosterone concentrations in Juvenile Male Wistar Rats. J Am Assoc Lab Anim Sci. 2016;55:749–55.

14. Pryce CR, Fuchs E. Chronic psychosocial stressors in adulthood: studies in mice, rats and tree shrews. Neurobiol Stress. 2017;6:94–103. doi: https://doi.org/10.1016/j.ynstr.2016.10.001

15. Yeung KS, Hernandez M, Mao JJ, Haviland I, Gubili J. Herbal medicine for depression and anxiety: a systematic review with assessment of potential psycho-oncologic relevance. Phyther Res. 2018;32:865–91. doi: https://doi.org/10.1002/ptr.6033

16. Kim JH, Son YK, Kim GH, Hwang KH. Xanthoangelol and 4-hydroxyderricin are the major active principles of the inhibitory activities against monoamine oxidases on Angelica keiskei K. Biomol Ther. 2013;21:234–40. doi: https://doi.org/10.4062/biomolther.2012.100

17. Patil SP, Liu C, Alban J, Yang N, Li XM. Glycyrrhiza uralensis flavonoids inhibit brain microglial cell TNF-α secretion, p-IκB expression, and increase brain-derived neurotropic factor (BDNF) secretion. J Tradit Chinese Med Sci. 2014;1:28–37. doi: https://doi.org/10.1016/j.jtcms.2014.11.004

18. Kawabata K, Kawai Y, Terao J. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. J Nutr Biochem. 2010;21:374–80. doi: https://doi.org/10.1016/j.jnutbio.2009.01.008

19. Kartiko BHBH, Siswanto FMFM. Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney. Sport Sci Health. 2018;14:1–7. doi: https://doi.org/10.1007/s11332-018-0433-6

20. Seibenhener ML, Wooten MC. Use of the open field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015;96:e52434. doi: https://doi.org/10.3791/52434

21. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp. 2015;97:52587. doi: https://doi.org/10.3791/52587

22. Hayley S, Merali Z, Anisman H. Stress and cytokine-elicited neuroendocrine and neurotransmitter sensitization: implications for depressive illness. Stress. 2003;6:19–32. doi: https://doi.org/10.1080/1025389031000091167

23. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology. 2015;51:164–75. doi: https://doi.org/10.1016/j.psyneuen.2014.09.025

24. Liu YN, Peng YL, Liu L, Wu TY, Zhang Y, Lian YJ, et al. TNFα mediates stress-induced depression by upregulating indoleamine 2,3-dioxygenase in a mouse model of unpredictable chronic mild stress. Eur Cytokine Netw. 2015;26:15–25. doi: https://doi.org/10.1684/ecn.2015.0362

25. Nochaiwong S, Ruengorn C, Thavorn K, Hutton B, Awiphan R, Phosuya C, et al. Global prevalence of mental health issues among the general population during the coronavirus disease-2019 pandemic: a systematic review and meta-analysis. Sci Rep. 2021;11:10173. doi: https://doi.org/10.1038/s41598-021-89700-8

26. dos Santos AT, Soares FC, Lima RA, dos Santos SJ, de Silva CR M, Bezerra J, et al. Violence and psychosocial stress: a 10-year time trend analysis. J Affect Disord. 2021;295:116–22. doi: https://doi.org/10.1016/j.jad.2021.08.011

27. Jackson SE, Brown J, Shahab L, McNeill A, Munafò MR, Brose L. Trends in psychological distress among adults in England, 2020-2022. JAMA Netw Open. 2023;6:e2321959. doi: https://doi.org/10.1001/jamanetworkopen.2023.21959

28. Beutel TF, Zwerenz R, Michal M. Psychosocial stress impairs health behavior in patients with mental disorders. BMC Psychiatry. 2018;18:375. doi: https://doi.org/10.1186/s12888-018-1956-8

29. Won E, Kim YK. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr Neuropharmacol. 2016;14:665–73. doi: https://doi.org/10.2174/1570159X14666151208113006

30. Kim E, Zhao Z, Rzasa JR, Glassman M, Bentley WE, Chen S, et al. Association of acute psychosocial stress with oxidative stress: evidence from serum analysis. Redox Biol. 2021;47:102138. doi: https://doi.org/10.1016/j.redox.2021.102138

31. Belovicova K, Bogi E, Csatlosova K, Dubovicky M. Animal tests for anxiety-like and depression-like behavior in rats. Interdiscip Toxicol. 2017;10:40–3. doi: https://doi.org/10.1515/intox-2017-0006

32. Duchaine CS, Aubé K, Gilbert-Ouimet M, Bruno Pena Gralle AP, Vezina M, Ndjaboue R, et al. Effect of psychosocial work factors on the risk of depression: a protocol of a systematic review and meta-analysis of prospective studies. BMJ Open. 2019;9:e033093. doi: https://doi.org/10.1136/bmjopen-2019-033093

33. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603–21. doi: https://doi.org/10.1002/cphy.c150015

34. Dean J, Keshavan M. The neurobiology of depression: an integrated view. Asian J Psychiatr. 2017;27:101–11. doi: https://doi.org/10.1016/j.ajp.2017.01.025

35. Sachs BD, Ni JR, Caron MG. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress. Proc Natl Acad Sci. 2015;112:2557–62. doi: https://doi.org/10.1073/pnas.1416866112

36. Jakobsen JC, Katakam KK, Schou A, Hellmuth SG, Stallknecht SE, Leth-Møller K, et al. Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and trial sequential analysis. BMC Psychiatry. 2017;17:58. doi: https://doi.org/10.1186/s12888-016-1173-2

37. Tafet G, Toister-Achituv M, Shinitzky M. Enhancement of serotonin uptake by cortisol: a possible link between stress and depression. Cogn Affect Behav Neurosci. 2001;1:96–104. doi: https://doi.org/10.3758/CABN.1.1.96

38. Fasipe O. Neuropharmacological classification of antidepressant agents based on their mechanisms of action. Arch Med Heal Sci. 2018;6:81. doi: https://doi.org/10.4103/amhs.amhs_7_18

39. Boyle CC, Cole SW, Irwin MR, Eisenberger NI, Bower JE. The role of inflammation in acute psychosocial stress-induced modulation of reward processing in healthy female adults. Brain, Behav Immun – Heal. 2023;28:100588. doi: https://doi.org/10.1016/j.bbih.2023.100588

40. Johnson JD, Barnard DF, Kulp AC, Mehta DM. Neuroendocrine regulation of brain cytokines after psychological stress. J Endocr Soc. 2019;3:1302–20. doi: https://doi.org/10.1210/js.2019-00053

41. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl). 2016;233:1637–50. doi: https://doi.org/10.1007/s00213-016-4218-9

42. Lee HJ, Choi TW, Kim HJ, Nam D, Jung SH, Lee EH, et al. Anti-inflammatory activity of Angelica keiskei through suppression of mitogen-activated protein kinases and nuclear factor- κ B activation pathways. J Med Food. 2010;13:691–9. doi: https://doi.org/10.1089/jmf.2009.1271

43. Kil YS, Pham ST, Seo EK, Jafari M. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch Pharm Res. 2017;40:655–75. doi: https://doi.org/10.1007/s12272-017-0892-3

44. Tsuboi H, Tatsumi A, Yamamoto K, Kobayashi F, Shimoi K, Kinae N. Possible connections among job stress, depressive symptoms, lipid modulation and antioxidants. J Affect Disord. 2006;91:63–70. doi: https://doi.org/10.1016/j.jad.2005.12.010

45. Geddie H, Cairns M, Smith L, van Wyk M, Beselaar L, Truter N, et al. The impact of chronic stress on intracellular redox balance: a systems level analysis. Physiol Rep. 2023;11:e15640. doi: https://doi.org/10.14814/phy2.15640

46. Pradhany RC, Siswanto FM, Sukoco H, Suarsana IN, Suartini IGAA. L-carnitine prevents hepatic steatosis in deep-frying oil-treated rat. Biomed Pharmacol J. 2022;15:1751–8. doi: https://doi.org/10.13005/bpj/2514

47. Wisesa IBGR, Sukoco H, Siswanto FM. The oxidant effect of bisphenol A (BPA) can be decoupled from its endocrine disruptor property. J Phys Conf Ser. 2020;1430:012007. doi: https://doi.org/10.1088/1742-6596/1430/1/012007

48. Phachonpai W, Preedapirom W, Wuthiyan K, Junkaew A, Tongun T. Lychee peel extract attenuates depression-like behavior in a rat model of chronic restraint stress. J Appl Pharm Sci. 2024;14(02):118–25. doi: https://doi.org/10.7324/JAPS.2024.148021

49. Kumburovic I, Selakovic D, Juric T, Jovicic N, Mihailovic V, Stankovic JK, et al. Antioxidant effects of Satureja hortensis L. Attenuate the anxiogenic effect of cisplatin in rats. Oxid Med Cell Longev. 2019;2019:1–15. doi: https://doi.org/10.1155/2019/8307196

50. Gautam M, Agrawal M, Gautam M, Sharma P, Gautam A, Gautam S. Role of antioxidants in generalised anxiety disorder and depression. Indian J Psychiatry. 2012;54:244. doi: https://doi.org/10.4103/0019-5545.102424

51. Wang H, Jin M, Xie M, Yang Y, Xue F, Li W, et al. Protective role of antioxidant supplementation for depression and anxiety: a meta-analysis of randomized clinical trials. J Affect Disord. 2023;323:264–79. doi: https://doi.org/10.1016/j.jad.2022.11.072

52. Mathiazhagan S, Anand S, Parthiban R, Sankaranarayanan B, Suresh S. Antidepressant-like effect of ethanolic extract from Caryophyllus aromaticus in albino rats. IOSR J Dent Med Sci. 2013;4:37–40.

53. Park I, Kim J, Kim M, Lim DW, Jung J, Kim MJ, et al. Sargassum horneri extract attenuates depressive-like behaviors in mice treated with stress hormone. Antioxidants. 2023;12:1841. doi: https://doi.org/10.3390/antiox12101841

54. Arab Z, Hosseini M, Mashayekhi F, Anaeigoudari A. Zataria multiflora extract reverses lipopolysaccharide-induced anxiety and depression behaviors in rats. Avicenna J Phytomed. 2020;10:78–88.

55. Mao QQ, Xian YF, Ip SP, Che CT. Involvement of serotonergic system in the antidepressant-like effect of piperine. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35:1144–7. doi: https://doi.org/10.1016/j.pnpbp.2011.03.017

56. Machado DG, Neis VB, Balen GO, Colla A, Cunha MP, Dalmarco JB, et al. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: evidence for the involvement of the dopaminergic system. Pharmacol Biochem Behav. 2012;103:204–11. doi: https://doi.org/10.1016/j.pbb.2012.08.016

57. Chen WQ, Zhao XL, Hou Y, Li ST, Hong Y, Wang DL, et al. Protective effects of green tea polyphenols on cognitive impairments induced by psychological stress in rats. Behav Brain Res. 2009;202:71–6. doi: https://doi.org/10.1016/j.bbr.2009.03.017

58. Dai W, Feng K, Sun X, Xu L, Wu S, Rahmand K, et al. Natural products for the treatment of stress-induced depression: pharmacology, mechanism and traditional use. J Ethnopharmacol. 2022;285:114692. doi: https://doi.org/10.1016/j.jep.2021.114692

59. Maronpot RR. Toxicological assessment of Ashitaba chalcone. Food Chem Toxicol. 2015;77:111–9. doi: https://doi.org/10.1016/j.fct.2014.12.021

60. Son HU, Yoon EK, Cha YS, Kim MA, Shin YK, Kim JM, et al. Comparison of the toxicity of aqueous and ethanol fractions of Angelica keiskei leaf using the eye irritancy test. Exp Ther Med. 2012;4:820–4. doi: https://doi.org/10.3892/etm.2012.677

61. Daniels WM, Pietersen CY, Carstens ME, Daya S, Stein D. Overcrowding induces anxiety and causes loss of serotonin 5HT-1a receptors in rats. Metab Brain Dis. 2000;15:287–95. doi: https://doi.org/10.1023/a:1011123208674

62. Abdul Shukkoor MS, Bin Baharuldin MTH, Mat Jais AM, Mohamad Moklas MA, Fakurazi S. Antidepressant-like effect of lipid extract of Channa striatus in chronic unpredictable mild stress model of depression in rats. Evid-Based Complement Altern Med. 2016;2016:1–17. doi: https://doi.org/10.1155/2016/2986090

63. Loginova NA, Loseva EV, Sarkisova KY, Kudrin VS. Effects of interferon-α on depressive-like behavior and brain neurochemistry in rats housed in standard and overcrowding conditions. J Evol Biochem Physiol. 2023;59:2005–21. doi: https://doi.org/10.1134/S0022093023060108

64. Nirmal J, Babu CS, Harisudhan T, Ramanathan M. Evaluation of behavioural and antioxidant activity of Cytisus scoparius link in rats exposed to chronic unpredictable mild stress. BMC Complement Altern Med. 2008;8:15. doi: https://doi.org/10.1186/1472-6882-8-15

65. Aparna S, Patri M. Benzo[a]pyrene exposure and overcrowding stress impacts anxiety-like behavior and impairs learning and memory in adult zebrafish, Danio rerio. Environ Toxicol. 2021;36:352–61. doi: https://doi.org/10.1002/tox.23041

66. Bi B, Yuan Y, Zhao Y, He M, Song H, Kong L, et al. Effect of crowding stress on growth performance, the antioxidant system and humoral immunity in hybrid sturgeon. Aquac Rep. 2023;28:101468. doi: https://doi.org/10.1016/j.aqrep.2023.101468

Article Metrics
38 Views 4 Downloads 42 Total

Year

Month

Related Search

By author names