In silico design of sitagliptin bioisosteres as new inhibitors of Mpro SARS-CoV-2

Abelardo Abad-Giron Lucero Asmad-Cruz Angella M. Cordova-Muñoz Cesar D. Gamarra-Sanchez Carmen R. Silva-Correa Víctor E. Villarreal-La Torre   

Open Access   

Published:  Sep 13, 2024

DOI: 10.7324/JAPS.2024.192856
Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that caused the last major pandemic and has led to multiple efforts being carried out around the world to investigate molecules such as specific chemotherapy drugs against this virus, such as the drug Sitagliptin, which inhibits Mpro, a protease of the virus, by acting on a highly conservative substrate recognition pocket in different coronaviruses. The study aims to develop new compounds under bioisosteric replacement techniques and obtain new SARS-Cov-2 Mpro inhibitors that are more effective than Sitagliptin. For this, 50 bioisosteric derivatives of Sitagliptin were designed, and the pharmacodynamic, pharmacokinetic, and physicochemical properties were analyzed. First, the physicochemical properties of oral absorption were analyzed according to the principles of Lipinski and Veber. The molecular docking was carried out between the protease Mpro (Protein Data Bank Code 7BB2) and the 26 bioisosteres that had the best oral absorption, with the bioisosteres modified in 2,4,5-trifluorophenyl being those that presented a lower affinity energy than that of Sitagliptin. In addition, molecules with pyrrole-pyrazole or similar groups have better pharmacokinetic properties. It is concluded that the pyrrole-pyrazole carboxamide derivative molecule has better energy affinity and ligand efficiency than the other bioisosteres; additionally, it has adequate pharmacokinetic properties, so it would be the best candidate to continue in in vitro or in vivo studies.


Keyword:     Sitagliptin molecular docking Mpro protein bioisostere SARS-CoV-2


Citation:

Abad-Giron A, Asmad-Cruz L, Cordova-Muñoz AM, Gamarra-Sanchez CD, Silva-Correa CR, Villarreal-La Torre VE. In silico design of sitagliptin bioisosteres as new inhibitors of Mpro SARS-CoV-2. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.192856

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Adil MT, Rahman R, Whitelaw D, Jain V, Al-Taan O, Rashid F, et al. SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J. 2021;97(1144):110–6. doi: https://doi.org/10.1136/postgradmedj-2020-138386

2. Khanna RC, Cicinelli MV, Gilbert SS, Honavar SG, Murthy GVS. COVID-19 pandemic: lessons learned and future directions. Indian J Ophthalmol. 2020;68(5):703. doi: https://doi.org/10.4103/ijo.IJO_843_20

3. Sirleaf EJ, Clark H. Report of the independent panel for pandemic preparedness and response: making COVID-19 the last pandemic. Lancet. 2021;398(10295):101–3. doi: https://doi.org/10.1016/S0140-6736(21)01095-3

4. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2020;19(3):141–54. doi: https://doi.org/10.1038/s41579-020-00459-7

5. Johansson MA, Quandelacy TM, Kada S, Prasad PV, Steele M, Brooks JT, et al. SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw Open. 2021;4(1):e2035057. doi: https://doi.org/10.1001/jamanetworkopen.2020.35057

6. Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol. 2020;10:587269. doi: https://doi.org/10.3389/fcimb.2020.587269

7. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–93. doi: https://doi.org/10.1038/s41586-020-2223-y

8. Beltrán LA, De La Hoz-Rodríguez S, Iserte LB, Rodríguez S, Fernández-De-La-pradilla A, et al. Advances in the development of SARS-CoV-2 Mpro inhibitors. Molecules 2022;27(8):2523. doi: https://doi.org/10.3390/molecules27082523

9. Longo M, Scappaticcio L, Signoriello S, Caruso P, Maio A, Botta G, et al. Glucose control during breakthrough SARS-CoV-2 infections in vaccinated patients with type 1 diabetes. Diabetes Res Clin Pract. 2024;207:111044. doi: https://doi.org/10.1016/j.diabres.2023.111044

10. Wheeler SE, Shurin GV, Yost M, Anderson A, Pinto L, Wells A, et al. Differential antibody response to mRNA COVID-19 vaccines in healthy subjects. Microbiol Spectr. 2021;9(1):10–1158. doi: https://doi.org/10.1128/Spectrum.00341-21

11. Abbasian MH, Mahmanzar M, Rahimian K, Mahdavi B, Tokhanbigli S, Moradi B, et al. Global landscape of SARS-CoV-2 mutations and conserved regions. J Transl Med. 2023;21(1):1–15. doi: https://doi.org/10.1186/s12967-023-03996-w

12. Röltgen K, Boyd SD. Antibody and B cell responses to SARS-CoV-2 infection and vaccination: the end of the beginning. Annu Rev Pathol. 2024;19(1):69–97. doi: https://doi.org/10.1016/j.chom.2021.06.009

13. Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005;3(10):e324. doi: https://doi.org/10.1371/journal.pbio.0030324

14. Al-Rabia MW, Alhakamy NA, Ahmed OAA, Eljaaly K, Aloafi AL, Mostafa A, et al. Repurposing of sitagliptin- melittin optimized nanoformula against SARS-CoV-2; antiviral screening and molecular docking studies. Pharmaceutics. 2021;13(3):307. doi: https://doi.org/10.3390/pharmaceutics13030307

15. Talukder P, Saha A, Roy S, Ghosh G, Roy DD, Barua S. Drugs for COVID-19 treatment: a new challenge. Appl Biochem Biotechnol. 2023;195(6):3653–70. doi: https://doi.org/10.1007/s12010-023-04439-4

16. Gómez-Ríos D, López-Agudelo VA, Ramírez-Malule H. Repurposing antivirals as potential treatments for SARS-CoV-2: From SARS to COVID-19. J Appl Pharm Sci. 2020;10(5):001–9. doi: https://doi.org/10.7324/JAPS.2020.10501

17. Rasul HO, Thomas NV, Ghafour DD, Aziz BK, Salgado MG, Mendoza-Huizar LH et al. Searching possible SARS-CoV-2 main protease inhibitors in constituents from herbal medicines using in silico studies. J Biomol Struct Dyn. 2023;42:1–15. doi: https://doi.org/10.1080/07391102.2023.2220040

18. Hashemian SMR, Sheida A, Taghizadieh M, Memar MY, Hamblin MR, Bannazadeh Baghi H, et al. Paxlovid (Nirmatrelvir/Ritonavir): a new approach to Covid-19 therapy?. Biomedicine Pharmacother. 2023;162:114367. doi: https://doi.org/10.1016/j.biopha.2023.114367

19. Strizki JM, Gaspar JM, Howe JA, Hutchins B, Mohri H, Nair MS, et al. Molnupiravir maintains antiviral activity against SARS-CoV-2 variants and exhibits a high barrier to the development of resistance. Antimicrob Agents Chemother. 2024;68(1):e0095323. doi: https://doi.org/10.1128/aac.00953-23

20. Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ. 2021;375:n2713. doi: https://doi.org/10.1136/bmj.n2713

21. Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–4. doi: https://doi.org/10.1038/nature12005

22. Tang B, He F, Liu D, He F, Wu T, Fang M, et al. AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. Biomolecules. 2022;12(6):746. doi: https://doi.org/10.3390/biom12060746

23. De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N. Covalent inhibitors design and discovery. Eur J Med Chem. 2017;138:96–114. doi: https://doi.org/10.1016/j.ejmech.2017.06.019

24. Aljoundi A, Bjij I, El Rashedy A, Soliman MES. Covalent versus non-covalent enzyme inhibition: which route should we take? A justification of the good and bad from molecular modelling perspective. Protein J. 2020;39(2):97–105. doi: https://doi.org/10.1007/s10930-020-09884-2

25. Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khurelbaatar M, et al. ZINC20-A free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model. 2020;60(12):6065–73. doi: https://doi.org/10.1021/acs.jcim.0c00675

26. SeeSAR version 13.0; BioSolveIT GmbH, Sankt Augustin, Germany; 2023 [cited 2023 Jun 19]. Available from: www.biosolveit.de/SeeSAR

27. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi: https://doi.org/10.1038/srep42717

28. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. doi: https://doi.org/10.1016/s0169-409x(00)00129-0

29. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23. doi: https://doi.org/10.1021/jm020017n

30. Costanzi E, Kuzikov M, Esposito F, Albani S, Demitri N, Giabbai B, et al. Structural and biochemical analysis of the dual inhibition of mg-132 against sars-cov-2 main protease (Mpro/3clpro) and human cathepsin-l. Int J Mol Sci. 2021;22(21):11779. doi: https://doi.org/10.3390/ijms222111779

31. Schrödinger L, DeLano W. PyMOL [Internet]. 2020. Available from: http://www.pymol.org/pymol

32. Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785. doi: https://doi.org/10.1002/jcc.21256

33. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. doi: https://doi.org/10.1002/jcc.21334

34. BIOVIA. Dassault systèmes BIOVIA discovery Studio v21.1.0.20298. San Diego, CA; 2020. Available from: https://www.3ds.com/products/biovia/reference-center

35. Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Do?an T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878–912. doi: https://doi.org/10.1093/bib/bby061

36. Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–72. doi: https://doi.org/10.1021/acs.jmedchem.5b00104

37. Michel J, Essex JW. Prediction of protein–ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des. 2010;24(8):639–58. doi: https://doi.org/10.1007/s10822-010-9363-3

38. Romera JA, Cortés-Cabrera Á, Sánchez-Murcia PA, Álvarez-Builla J, Gago F, María E, et al. Bases moleculares de la selectividad de ligandos por receptores de melatonina. Dianas. 2013;2(2):1–8. Available from: http://hdl.handle.net/10017/19004

39. Hopkins AL, Keserü GM, Leeson PD, Rees DC, Reynolds CH. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov. 2014;13(2):105–21. doi: https://doi.org/10.1038/nrd4163

40. Horna-Rodriguez AM, Lopez-Gamboa JA, Silva-Correa CR, Antonio SGW, Gamarra-Sanchez CD, Villarreal-La Torre VE. In silico analysis of the polyphenolic metabolites of zea mays L. “Purple Corn” on HMG-CoA reductase. Pharmacogn J. 2022;14(3):549–58. doi: https://doi.org/10.5530/pj.2022.14.70

41. Reynolds CH, Tounge BA, Bembenek SD. Ligand binding efficiency: trends, physical basis, and implications. J Med Chem. 2008;51(8):2432–8. doi: https://doi.org/10.1021/jm701255b

42. Brito MA de. Pharmacokinetic study with computational tools in the medicinal chemistry course. Braz J Pharm Sci. 2011;47(4):797–805.

https://doi.org/10.1590/S1984-82502011000400017

43. Yu DK. The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions. J Clin Pharmacol. 1999;39(12):1203–11. doi: https://doi.org/10.1177/00912709922012006

44. Clark DE. In silico prediction of blood–brain barrier permeation. Drug Discov Today. 2003;8(20):927–33. doi: https://doi.org/10.1016/s1359-6446(03)02827-7

45. Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol. 2020;94(11):3671–722. doi: https://doi.org/10.1007/s00204-020-02936-7

46. Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther. 2013;346(2):300–10. doi: https://doi.org/10.1124/jpet.113.203257

47. Zeiger E. The test that changed the world: the Ames test and the regulation of chemicals. Mutat Res Genet Toxicol Environ Mutagen. 2019;841:43–8. doi: https://doi.org/10.1124/jpet.113.203257

48. Modi S, Li J, Malcomber S, Moore C, Scott A, White A, et al. Integrated in silico approaches for the prediction of Ames test mutagenicity. J Comput Aided Mol Des. 2012;26(9):1017–33. doi: https://doi.org/10.1007/s10822-012-9595-5

Article Metrics
45 Views 5 Downloads 50 Total

Year

Month

Related Search

By author names