Despite the broad spectrum of the antibiotic Azithromycin, its extremely bitter taste after oral dosing decreases patient compliance. This bitter taste can be masked by minimizing Azithromycin interaction with the tasting buds using polymers that are insoluble at salivary pH (6.8–7.4), like the cationic polymers Eudragit EPO and Eudragit S100. The purpose of this study was to employ two different techniques (solvent evaporation (SE) and supercritical fluid technology (SFT)) for encapsulating Azithromycin into Eudragit microparticles to mask its bitter taste. The formulations were characterized using Fourier-transform infrared spectroscopy (FTIR(, powder X-ray diffraction (PXRD), Differential scanning calorimetry (DSC), and scanning electron microscope (SEM). Also, the Azithromycin in vitro release and in vivo assessment of bitter taste masking were conducted. The present work showed promising results in veiling the bitter taste of Azithromycin. Taste panel scores for the in vivo clinical taste study of the formulation prepared using SE was 0.3 after 30 seconds compared to Azithromycin, resulting in a score of 3 owing to its palpable bitter taste. Whereas drug-Eudragit EPO showed no interaction, FTIR results indicated azithromycin interaction with Eudragit S100. The formulation prepared by the SE method and Eudragit EPO showed efficient taste masking, within-matrix encapsulation, lower drug release in simulated salivary fluid (SSF, <2% released over 60 seconds), and loss of Azithromycin’s crystallinity. On the contrary, SFT had higher encapsulation efficiency (91%) but faster in vitro release (6% released over 60 seconds). Thus, SE was better than SFT in Azithromycin taste masking using Eudragit EPO.
Mashaqbeh H, Obaidat R, Alsmadi MM, Athamneh T. Comparison between solvent evaporation and supercritical CO2 technology in taste-masking of Azithromycin bitter-taste using pH-sensitive Eudragit EPO or Eudragit S100 polymers. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.171403
1. Pediatrics AAO. Periodic Survey# 44: patient compliance with prescription regimens. 2015. | |
2. Chirag JP, Tyagi S, Dhruv M, Ishita M, Gupta A, Mohammed Usman M, et al. Pharmaceutical taste masking technologies of bitter drugs: a concise review. J Drug Discov Ther. 2013;1(5):39-46. | |
3. Patil V, Tambe V, Pathare B, Dhole S. Modern taste concealing techniques in pharmaceuticals: a review. WJPPS. 2014;3:293-316. | |
4. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan G. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul. 2010;27(3):187-97. https://doi.org/10.3109/02652040903131301 | |
5. Al-kasmi B, Alsirawan MB, Bashimam M, El-zein H. Mechanical microencapsulation: the best technique in taste masking for the manufacturing scale-effect of polymer encapsulation on drug targeting. J Control Release. 2017;260:134-41. https://doi.org/10.1016/j.jconrel.2017.06.002 | |
6. Patra CN, Priya R, Swain S, Jena GK, Panigrahi KC, Ghose D. Pharmaceutical significance of Eudragit: a review. Future J Pharm Sci. 2017;3(1):33-45. https://doi.org/10.1016/j.fjps.2017.02.001 | |
7. Thakral S, Thakral NK, Majumdar DK. Eudragit®: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131-49. https://doi.org/10.1517/17425247.2013.736962 | |
8. Cantor SL, Khan MA, Gupta A. Development and optimization of taste-masked orally disintegrating tablets (ODTs) of clindamycin hydrochloride. Drug Dev Ind Pharm. 2015;41(7):1156-64. https://doi.org/10.3109/03639045.2014.935392 | |
9. Jelvehgari M, Valizadeh H, Kiafarab F, Afandipourc L. Taste masking and characterization of chlorpheniramine maleate by using enteric polymers carrier system. J Rep Pharm Sci. 2013;2(1):45-58. https://doi.org/10.4103/2322-1232.222236 | |
10. Ghorab MM, Zia H, Luzzi LA. Preparation of controlled release anticancer agents I: 5-fluorouracil-ethyl cellulose microspheres. J Microencapsul. 1990;7(4):447-54. https://doi.org/10.3109/02652049009040466 | |
11. Lee C-W, Kim S-J, Youn Y-S, Widjojokusumo E, Lee Y-H, Kim J, et al. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J Supercrit Fluids. 2010;55(1):348-57. https://doi.org/10.1016/j.supflu.2010.05.028 | |
12. Obaidat R, Aleih H, Mashaqbeh H, Altaani B, Alsmadi MtM, Alnaief M. Development and evaluation of cocoa butter taste masked ibuprofen using supercritical carbon dioxide. AAPS PharmSciTech. 2021;22:1-13. https://doi.org/10.1208/s12249-021-01962-7 | |
13. Machado ND, Mosquera JE, Martini RE, Goñi ML, Gañán NA. Supercritical CO2-assisted impregnation/deposition of polymeric materials with pharmaceutical, nutraceutical, and biomedical applications: a review (2015-2021). J Supercrit Fluids. 2022;191:105763. https://doi.org/10.1016/j.supflu.2022.105763 | |
14. AlSheyyab RY, Obaidat RM, Altall YR, Abuhuwaij RT, Ghanma RR, Ailabouni AS, et al. Solubility enhancement of nimodipine through preparation of Soluplus® dispersions. J Appl Pharm Sci. 2019;9(9):030-7. https://doi.org/10.7324/JAPS.2019.90905 | |
15. Obaidat RM, Alnaief M, Mashaqbeh H. Investigation of carrageenan aerogel microparticles as a potential drug carrier. Aaps Pharm. 2018;19:2226-36. https://doi.org/10.1208/s12249-018-1021-4 | |
16. Bagheri H, Notej B, Shahsavari S, Hashemipour H. Supercritical carbon dioxide utilization in drug delivery: experimental study and modeling of paracetamol solubility. Eur J Pharm Sci. 2022;177:106273. https://doi.org/10.1016/j.ejps.2022.106273 | |
17. Joshi J. Azithromycin drug profile. Indian J Otolaryngol Head Neck Surg. 1995;47(4):331-3. https://doi.org/10.1007/BF03048008 | |
18. Bakheit AH, Al-Hadiya BM, Abd-Elgalil AA. Azithromycin. Profiles of drug substances, excipients and related methodology. Elsevier, Amsterdam, The Netherlands, pp 1-40, 2014. https://doi.org/10.1016/B978-0-12-800173-8.00001-5 | |
19. Harrison TS, Keam SJ. Azithromycin extended release. Drugs. 2007;67(5):773-92. https://doi.org/10.2165/00003495-200767050-00010 | |
20. Fiese E, Steffen S. Comparison of the acid stability of azithromycin and erythromycin A. J Antimicrob Chemother. 1990;25(suppl_A):39-47. https://doi.org/10.1093/jac/25.suppl_A.39 | |
21. Tung N-T, Tran C-S, Nguyen T-L, Hoang T, Trinh T-D, Nguyen T-N. Formulation and biopharmaceutical evaluation of bitter taste masking microparticles containing azithromycin loaded in dispersible tablets. Eur J Pharm Biopharm. 2018;126:187-200. https://doi.org/10.1016/j.ejpb.2017.03.017 | |
22. Amin F, Khan S, Shah SMH, Rahim H, Hussain Z, Sohail M, et al. A new strategy for taste masking of azithromycin antibiotic: development, characterization, and evaluation of azithromycin titanium nanohybrid for masking of bitter taste using physisorption and panel testing studies. Drug Design Dev Ther. 2018:3855-66. https://doi.org/10.2147/DDDT.S183534 | |
23. Hu L, Pan J, Liu C, Xu H, Luo L. Preparation, characterization and taste-masking properties of microspheres containing azithromycin. J Pharm Pharm. 2009;61(12):1631-5. https://doi.org/10.1211/jpp.61.12.0007 | |
24. Chen Y, Liu Y, Wu C, Pan X, Peng T. Dry suspension containing coated pellets with pH-dependent drug release behavior for the taste-masking of Azithromycin. AAPS PharmSciTech. 2022;24(1):21. https://doi.org/10.1208/s12249-022-02484-6 | |
25. Siddiqui F, Shoaib MH, Ahmed FR, Qazi F, Yousuf RI, Usmani MT, et al. Formulation development and optimization of taste-masked azithromycin oral suspension with ion exchange resins: Bioanalytical method development and validation, in vivo bioequivalence study, and in-silico PBPK modeling for the paediatric population. J Drug Deliv Sci Technol. 2023;79:104048. https://doi.org/10.1016/j.jddst.2022.104048 | |
26. Mashaqbeh H, Obaidat RM, Alsmadi MtM. Solvent-free method for masking the bitter taste of azithromycin dihydrate using supercritical fluid technology. Drug Dev Indust Pharm. 2024;50:1-10. https://doi.org/10.1080/03639045.2023.2298892 | |
27. Budisa N, Schulze-Makuch D. Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life. 2014;4(3):331-40. https://doi.org/10.3390/life4030331 | |
28. Alnaief M, Obaidat R, Mashaqbeh H. Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydr Polym. 2018;180:264-75. https://doi.org/10.1016/j.carbpol.2017.10.038 | |
29. Guhmann M, Preis M, Gerber F, Pöllinger N, Breitkreutz J, Weitschies W. Development of oral taste masked diclofenac formulations using a taste sensing system. Int J Pharm. 2012;438(1-2):81-90. https://doi.org/10.1016/j.ijpharm.2012.08.047 | |
30. Waghule SN, Jain NP, Patani CJ, Patani AC. Method development and validation of HPLC method for determination of azithromycin. Der Pharma Chemica. 2013;5(4):166-72. | |
31. Ali M, Walboomers XF, Jansen JA, Yang F. Influence of formulation parameters on encapsulation of doxycycline in PLGA microspheres prepared by double emulsion technique for the treatment of periodontitis. Jf Drug Deliv Sci Technol. 2019;52:263-71. https://doi.org/10.1016/j.jddst.2019.04.031 | |
32. Adeli E. Preparation and evaluation of azithromycin binary solid dispersions using various polyethylene glycols for the improvement of the drug solubility and dissolution rate. Braz J Pharm Sci. 2016;52(1):1-13. https://doi.org/10.1590/S1984-82502016000100002 | |
33. Montejo-Bernardo J, García-Granda S, Bayod-Jasanada M, Llorente I, Llavonab L. An easy and general method for quantifying Azithromycin dihydrate in a matrix of amorphous Azithromycin. Arkivoc. 2005;9:321-31. https://doi.org/10.3998/ark.5550190.0006.927 | |
34. Braga ME, Pato MTV, Silva HSC, Ferreira EI, Gil MH, Duarte CM, et al. Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives. Jf Supercr Fluids. 2008;44(2):245-57. https://doi.org/10.1016/j.supflu.2007.10.002 | |
35. Champeau M, Thomassin JM, Tassaing T, Jerome C. Drug loading of sutures by supercritical CO2 impregnation: effect of polymer/drug interactions and thermal transitions. Macromole Mater Eng. 2015;300(6):596-610. https://doi.org/10.1002/mame.201400369 | |
36. Champeau M, Thomassin J-M, Tassaing T, Jérôme C. Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review. J Control Release. 2015;209:248-59. https://doi.org/10.1016/j.jconrel.2015.05.002 | |
37. Timoumi S, Mangin D, Peczalski R, Zagrouba F, Andrieu J. Stability and thermophysical properties of azithromycin dihydrate. Arabian J Chem. 2014;7(2):189-95. https://doi.org/10.1016/j.arabjc.2010.10.024 | |
38. Alnaief M, Obaidat R, Mashaqbeh H. Loading and evaluation of meloxicam and atorvastatin in carrageenan microspherical aerogels particles. J Appl Pharm Sci. 2019;9(1):083-8. https://doi.org/10.7324/JAPS.2019.90112 | |
39. Alsayad R, Laham A. Investigation of the effects of some process variables on the azithromycin microencapsulation by the quasi-emulsion solvent evaporation method. Res J Pharm Technol. 2023;16(8):3909-14. https://doi.org/10.52711/0974-360X.2023.00643 |
Year
Month