Carbon tetrachloride is employed to induce hepatotoxicity in experimental animals to mimic oxidative stress caused by several factors in humans and impair liver functions and lead to hepatic damage. Fruits of Musa balbisiana Colla are rich in bioactive compounds and hold therapeutic and nutritional worth. This current study aims to explore the phytochemical constituents, antioxidant effects, and hepatoprotective activity of a methanolic extract derived from the unripe fruit pulp of M. balbisiana Colla via phytochemical screening, evaluation of antioxidant activity, in vivo experiments in Swiss albino mice through monitoring of the body and the liver weight, estimation of hepatic biomarkers, enzymes, malondialdehyde (MDA), and cytokines along with immunohistochemical and histopathological study. The methanolic fruit extract administration minimized hepatic biomarker and MDA levels along with the cytokines and also elevated superoxide dismutase, catalase, plus glutathione content compared to the hepatotoxic group (p < 0.05). Immunohistochemical findings and histopathological examinations of the liver tissues from methanolic extract-treated mice displayed the down regulation of transforming growth factor beta in hepatic parenchymal tissues and re-establishment of standard structural attributes of hepatic tissue. The outcomes of our research illustrate that the methanolic fruit extract of M. balbisiana Colla administration assists in hepatotoxicity attenuation.
Baruah N, Das M, Saikia KK, Kalita JC. Anti-oxidative constituents of Musa balbisiana Colla fruit extract and evaluation of hepatoprotective activity in CCl4-induced hepatotoxicity in Swiss albino mice. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.172339
1. Marques TR, Caetano AA, Henrique S, Cesar P, Braga MA, Henrique A et al. Antioxidant activity and hepatoprotective potential of lyophilized extract of Acerola bagasse against CCl4-induced hepatotoxicity in Wistar rats. J Food Biochem. 2018;42(6):e12670. doi: https://doi.org/10.1111/jfbc.12670
2. Ramos-Lopez O, Martinez-Lopez E, Roman S, Fierro NA, Panduro A. Genetic, metabolic and environmental factors involved in the development of liver cirrhosis in Mexico. World J Gastroenterol. 2015;21(41):11552–66. doi: https://doi.org/10.3748/wjg.v21.i41.11552
3. Li L, Zhou YF, Li YL, Wang LL, Arai H, Xu Y. In vitro and in vivo antioxidative and hepatoprotective activity of aqueous extract of Cortex Dictamni. World J Gastroenterol. 2017;23(16):2912–27. doi: https://doi.org/10.3748/wjg.v23.i16.2912
4. Borborah K, Borthakur S, Tanti B. Musa balbisiana Colla-taxonomy, traditional knowledge and economic potentialities of the plant in Assam, India. Indian J Tradit Knowl. 2016;15:116–20. Available from: https://tinyurl.com/3rsdp367
5. Deka P, Kashyap A, Sharma D, Baruah C. A review on Musa balbisiana Colla. Int J Pharm Sci Invention. 2019;7(7):14–7.
6. Russell WR, Labat A, Scobbie L, Duncan GJ, Duthie GG. Phenolic acid content of fruits commonly consumed and locally produced in Scotland. Food Chem. 2019;115(1):100–4
7. Dharajiya D, Patel P, Patel M, Moitra N. In vitro antimicrobial activity and qualitative phytochemical analysis of Withania somnifera (L.) Dunal extracts. Int J Pharmaceutical Sci Rev Res. 2014;27(2):349–54. Available from: http://tiny.cc/ln7izz
8. Pandey A, Tripathi S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem. 2014;2(5):115–9.
9. Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA et al. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complement Alternat Med. 2014;2014:253875. doi: https://doi.org/10.1155/2014/253875
10. Phuyal N, Jha PK, Raturi PP, Rajbhandary S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Sci World J. 2020;2020:8780704. doi: https://doi.org/10.1155/2020/8780704
11. Carmona-Hernandez JC, Le M, Idárraga-Mejía AM, González-Correa CH. Flavonoid/polyphenol ratio in Mauritia flexuosa and Theobroma grandiflorum as an indicator of effective antioxidant action. Molecules. 2021;26(21):6431. doi: https://doi.org/10.3390/molecules26216431
12. Ravi L, Manasvi V, Praveena BL. Antibacterial and antioxidant activity of saponin from Abutilon indicum leaves. Asian J Pharm Clin Res. 2016;9(9):344–7. doi: https://doi.org/10.22159/ajpcr.2016.v9s3.15064
13. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins BD. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006;19(6–7):669–75. doi: https://doi.org/10.1016/j.jfca.2006.01.003
14. Makni M, Chtourou Y, Garoui E, Boudawara T, Fetoui H. Carbon tetrachloride-induced nephrotoxicity and DNA damage in rats. Hum Amp Exp Toxicol. 2012;31(8):844–52. doi: https://doi.org/10.1177/0960327111429140
15. Ebaid H, Al-Tamimi J, Habila M, Hassan I, Rady A, Alhazza IM. Potential therapeutic effect of synthesized AgNP using curcumin extract on CCl4-induced nephrotoxicity in male mice. J King Saud Univ Sci. 2021;33(2):101356. doi: https://doi.org/10.1016/j.jksus.2021.101356
16. Nbete RZ, Lekpa KD. Hepatomegaly with steatosis affects the normal liver physiology of young adults in port-harcourt metropolis: a sonographic assessment. Asian Res Rep Hepatol. 2021;3:31–6. Available from: http://tiny.cc/9o7izz
17. Kieswich JE, Chen J, Alliouachene S, Caton PW, McCafferty K, Thiemermann C, et al. Immunohistochemistry of kidney a-SMA, Collagen 1, and Collagen 3, in a novel mouse model of reno-cardiac syndrome. Bio Protoc. 2020;10(18):e3751. doi: https://doi.org/10.21769/BioProtoc.3751
18. Copper JE, Budgeon LR, Foutz CA, van Rossum DB, Vanselow DJ, Hubley MJ et al. Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrafish. Comp Biochem Physiol. 2018;208:38–46. doi: https://doi.org/10.1016/j.cbpc.2017.11.003
19. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3–8. doi: https://doi.org/10.1016/s0026-0495(00)80077-3
20. Cicho?-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082–91. doi: https://doi.org/10.3748/wjg.v20.i25.8082
21. Irawan C, Utami A, Styani E, Putri ID, Putri RK, Dewanta A et al. Potential of ethanolic extract from Ripe Musa balbisiana Colla Fruit using ultrasound-assisted extraction as an antioxidant and anti-Gout. Pharmacogn J. 2021;13(6):1332–40. doi: http://dx.doi.org/10.5530/pj.2021.13.168
22. Abdullah FC, Rahimi L, Zakaria ZA, Ibrahim AL. Hepatoprotective, antiulcerogenic, cytotoxic and antioxidant activities of Musa acuminata peel and pulp. Novel Plant Bioresour Appl Food Med Cosmet. 2014:371-82. https://doi.org/10.1002/9781118460566.ch26
23. Verma P, Paswan SK, Verma S, Singh SP, Rao CV, Shrivastva S, et al. Assessment of hepatoprotective activity of Musa paradisica Linn. Whole plant extract against carbon tetrachloride induced hepatotoxicity in wistar rats. Int J Pharm Sci Res. 2017;8(1):126. https://doi.org/10.7897/2230-8407.08013
24. Yusof N, Gani H, Sedik SN. Antioxidant and antimicrobial activities of pisang berangan (Musa paradisiaca) pulp and peel extracts. J Agrobiotech. 2023 Oct 26;14(2):71-82.
25. Dikshit P, Tyagi MK, Shukla K, Sharma S, Gambhir JK, Shukla R. Hepatoprotective effect of stem of Musa sapientum Linn in rats intoxicated with carbon tetrachloride. Annals Hepatol. 2016;10(3):333-9. https://doi.org/10.1016/S1665-2681(19)31546-7
26. Jayamurthy P, Aparna B, Gayathri G, Nisha P. Evaluation of antioxidant potential of inflorescence and stalk of plantain (Musa sapientum). J Food Biochem. 2013 Feb;37(1):2-7. https://doi.org/10.1111/j.1745-4514.2011.00587.x
27. Childs JT, Esterman AJ, Thoirs KA, Turner RC. Ultrasound in the assessment of hepatomegaly: a simple technique to determine anenlarged liver using reliable and valid measurements. Sonography. 2016;3(2):47–52. doi: https://doi.org/10.1002/sono.12051
28. Khan MA, Ahmad W, Ahmad M, Nisar M. Hepatoprotective effect of the solvent extracts of Viola canescens Wall. ex. Roxb. against CCl4 induced toxicity through antioxidant and membrane stabilizing activity. BMC Complement Altern Med. 2017;17(1):10. doi: https://doi.org/10.1186/s12906-016-1537-7
29. Almatroodi SA, Anwar S, Almatroudi A, Khan AA, Alrumaihi F, Alsahli MA et al. Hepatoprotective effects of garlic extract against carbon tetrachloride (CCl4)-Induced liver injury via modulation of antioxidant, anti-inflammatory activities and hepatocyte architecture. Appl Sci. 2020;10(18):6200. doi: http://dx.doi.org/10.3390/app10186200
30. Devaraj E, Roy A, Royapuram VG, Magesh A, Varikalam SA, Arivarasu L et al. β-Sitosterol attenuates carbon tetrachloride–induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedeb Arch Pharmacol. 2020;393(6):1067–75. doi: https://doi.org/10.1007/s00210-020-01810-8
31. Elsawy H, Badr GM, Sedky A, Abdallah BM, Alzahrani AM, Abdel-Moneim AM. Rutin ameliorates carbon tetrachloride (CCl4)-induced hepatorenal toxicity and hypogonadism in male rats. Peer J. 2019;7:e7011. doi: https://doi.org/10.7717/peerj.7011
32. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. doi: https://doi.org/10.1101/cshperspect.a016295
33. Aly O, Abouelfadl DM, Shaker OG, Hegazy GA, Fayez AM, Zaki HH. Hepatoprotective effect of Moringa oleifera extract on TNF-α and TGF-β expression in acetaminophen-induced liver fibrosis in rats. Egypt J Med Hum Genet. 2020;21(1):1–9. doi: https://doi.org/10.1186/s43042-020-00106-z
34. Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech. 2000;50(3):184–95. doi: https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H
35. Ma Z, Sheng L, Li J, Qian J, Wu G, Wang Z, et al. Resveratrol alleviates hepatic fibrosis in associated with decreased endoplasmic reticulum stress-mediated apoptosis and inflammation. Inflammation. 2022;45:812–23. doi: https://doi.org/10.1007/s10753-021-01586-w
36. Hassan AA, Thabet NM, Abdel-Rafei MK. Hyaluronan as a mediator for the hepatoprotective effect of Diosmin/Hesperidin complex. Pak J Pharm Sci. 2018;31:1191–1201. Available from: http://tiny.cc/xo7izz
37. Xu Z, Chen Z, Lan T, Han Y, Yang N, Wang C et al. Protective effects of phytic acid on CCl4-induced liver fibrosis in mice. J Food Biochem. 2023;2023:1–11. doi: https://doi.org/10.1155/2023/6634450
38. Chávez E, Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P. et al. Resveratrol prevents fibrosis, NF-κB activation and TGF-β increases induced by chronic CCl4 treatment in rats. J Appl Toxicol. 2007;28(1):35–43. doi: https://doi.org/10.1002/jat.1249
39. Liu L, Li XM, Chen L, Feng Q, Xu LL, Hu YY. The effect of gypenosides on TGF-β1/smad pathway in liver Fibrosis Induced by carbon tetrachloride in rats. Intern J Integr Med. 2013;1:1–6. Available from: https://api.semanticscholar.org/CorpusID:51860978
40. Abdel-Hamid NM, Nazmy MH, Wahid A, Abdel-Moniem EM. Jerusalem artichoke attenuates experimental hepatic fibrosis via modulation of apoptotic signaling and fibrogenic activity . Biochem Biotech Res. 2015;3(3)43–50. Available from: http://tiny.cc/dp7izz
41. Chale-Dzul J, Pérez-Cabeza de VR, Quintal-Novelo C, Olivera-Castillo L, Moo-Puc R. Hepatoprotective effect of a fucoidan extract from Sargassum fluitans Borgesen against CCl4-induced toxicity in rats. Int J Biol Macromol. 2020;145:500–9. doi: https://doi.org/10.1016/j.ijbiomac.2019.12.183
Year
Month