Endophytic fungi from red ginger (Zingiber officinale var. rubrum) as promising source of antimicrobial and cytotoxic secondary metabolites

Ni Putu Ariantari Ni Putu Eka Leliqia I Putu Yogi Astara Putra Nadzifa Nugraheni Riris Istighfari Jenie Edy Meiyanto   

Open Access   

Published:  Aug 17, 2024

DOI: 10.7324/JAPS.2024.178823
Abstract

In the present study, we reported eight endophytic fungi isolated from stems, rhizomes, and roots of red ginger (Zingiber officinale var. rubrum), collected from Bali, Indonesia. Molecular biology protocol through amplification of internal transcribed spacer and LSU region led to the identification of six fungal isolates as Microdochium colombiense ZOR-S1-1, Phlebiopsis flavidoalba ZOR-S1-3, Penicillium citrinum ZOR-S1-4.1, Dactylonectria anthuriicola ZOR-Rh1-3, Setophoma terrestris ZOR-Br1-1, and Xylaria cubensis ZOR-Rh1-1. Meanwhile, two fungal isolates, ZOR-S1-4 and ZOR-Br1-2, are remain unidentified. Following rice fermentation of all isolated endophytes, all fungal extracts were subjected to antimicrobial, toxicity, and cytotoxicity assays. In the antimicrobial assay, S. terrestris ZOR-Br1-1 extract showed the most pronounced activity against Staphylococcus aureus ATCC 6538 and Candida albicans ATCC 10231, with MIC values of 31.3 and 15.6 μg/ml. Meanwhile, D. anthuriicola ZOR-Rh1-3 extract revealed the most potent activity in toxicity screening employing the brine shrimp lethality test (BSLT), with an LC50 value of 6.8 μg/ml. When tested further for cytotoxicity against breast cancer cells, MCF-7 and 4T1, extracts of D. anthuriicola ZOR-Rh1-3, P. citrinum ZOR-S1-4.1, unidentified isolates ZOR-S1-4 and ZOR-Br1-2, showed strong to moderate inhibition against both tested cell lines with IC50 values ranging from 14 to 74 μg/ml. In light of the bioactivity of endophytic fungal extracts from red ginger found in this study, investigation on secondary metabolites and their pharmacological action on antimicrobial and cytotoxicity of endophytic S. terrestris ZOR-Br1-1, D. anthuriicola ZOR-Rh1-3, and P. citrinum ZOR-S1-4.1 are of scientific interest for further research. Moreover, this result highlights the bioprospecting opportunity of endophytic fungi associated with medicinal plants as a source of bioactive secondary metabolites.


Keyword:     Antibacterial anticancer cytotoxicity endophytic fungi red ginger Zingiber officinale var. rubrum


Citation:

Ariantari NP, Leliqia NPE, Putra IPYA, Nugraheni N, Jenie RI, Meiyanto E. Endophytic fungi from red ginger (Zingiber officinale var. rubrum) as promising source of antimicrobial and cytotoxic secondary metabolites. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.178823

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, et al. Endophytic fungi: an effective alternative source of plant-derived bioactive compounds for pharmacological studies. JoF. 2022;8:205. doi: https://doi.org/10.3390/jof8020205

2. Rai N, Kumari Keshri P, Verma A, Kamble SC, Mishra P, Barik S, et al. Plant Associated fungal endophytes as a source of natural bioactive compounds. Mycology. 2021;12:139–59. doi: https://doi.org/10.1080/21501203.2020.1870579

https://doi.org/10.1080/21501203.2020.1870579

3. Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, et al. Fungal endophytes: microfactories of novel bioactive compounds with therapeutic interventions; a comprehensive review on the biotechnological developments in the field of fungal endophytic biology over the last decade. Biomolecules. 2023;13:1038. doi: https://doi.org/10.3390/biom13071038

4. Strobel G. The emergence of endophytic microbes and their biological promise. J F. 2018;4:57. doi: https://doi.org/10.3390/jof4020057

https://doi.org/10.3390/jof4020057

5. Ariantari NP, Frank M, Gao Y, Stuhldreier F, Kiffe-Delf A-L, Hartmann R, et al. Fusaristatins D–F and (7S,8R)-(−)- Chlamydospordiol from Fusarium sp. BZCB-CA, an Endophyte of Bothriospermum chinense. Tetrahedron. 2021;85:132065. doi: https://doi.org/10.1016/j.tet.2021.132065

6. Ariantari NP, Putra IPYA, Leliqia NPE, Yustiantara PS, Proborini MW, Nugraheni N, et al. Antibacterial and cytotoxic secondary metabolites from endophytic fungi Associated with Antidesma bunius Leaves. J Appl Pharm Sci. 2023;13:132–43. doi: https://doi.org/10.7324/JAPS.2023.101347

7. Marwan H, Hayati I, Mulyati S. Effectiveness of biofungicide formula on rhizome rot disease of red ginger and its plant growth. Biodiversitas. 2023;24:2143–8. doi: https://doi.org/10.13057/biodiv/d240425

8. Khafyah N, Dewi ST, Jumain. The effectiveness of red ginger extract (Zingiber officinale var. rubrum) on decreased blood glucose levels in mice (Mus musculus). Ihj. 2023;2:16–21. doi: https://doi.org/10.58344/ihj.v2i1.23

https://doi.org/10.58344/ihj.v2i1.23

9. Razali N, Dewa A, Asmawi MZ, Mohamed N, Manshor NM. Mechanisms underlying the vascular relaxation activities of Zingiber officinale var. rubrum in thoracic aorta of spontaneously hypertensive ats. J Integr Med. 2020;18:46–58. doi: https://doi.org/10.1016/j.joim.2019.12.003

10. Fajrin FA, Imandasari N, Barki T, Sulistyaningrum G, Afifah, Kristiningrum N, et al. The antioxidant activity of red ginger oil in aloxan-induced painful diabetic neuropathy in mice model. Thai J Pharm Sci. 2019;43:69–75

11. Rialita T, Nurhadi B, Puteri RD. Characteristics of microcapsule of red ginger (Zingiber officinale var. rubrum) essential oil produced from different arabic gum ratios on antimicrobial activity toward Escherichia coli and Staphylococcus aureus. Int J Food Prop. 2018;21:2500–8. doi: https://doi.org/10.1080/10942912.2018.1528455

https://doi.org/10.1080/10942912.2018.1528455

12. Rinanda T, Isnanda RP, Zulfitri. Chemical analysis of red ginger (Zingiber officinale Roscoe var rubrum) essential oil and its anti-biofilm activity against Candida albicans. Nat Prod Commun. 2018;13:1587– 90. doi: https://doi.org/10.1177/1934578X1801301206

13. Yamauchi K, Natsume M, Yamaguchi K, Batubara I, Mitsunaga T. Structure-activity relationship for vanilloid compounds from extract of Zingiber officinale var rubrum Rhizomes: effect on extracellular melanogenesis inhibitory activity. Med Chem Res. 2019;28:1402–12. doi: https://doi.org/10.1007/s00044-019-02380-y

https://doi.org/10.1007/s00044-019- 02380-y

14. Strobel G, Daisy B, Castillo U, Harper J. Natural products from endophytic microorganisms. J Nat Prod. 2004;67:257–68. doi: https://doi.org/10.1021/np030397v

15. Caruso G, Abdelhamid MT, Kalisz A, Sekara A. Linking endophytic fungi to medicinal plants therapeutic activity. A case study on Asteraceae. Agriculture. 2020;10:286.

https://doi.org/10.3390/agriculture10070286

16. Ginting RCB, Sukarno N, Widyastuti U, Darusman LK, Kanaya S. Diversity of endophytic fungi from red ginger (Zingiber officinale Rosc.) plant and their inhibitory effect to Fusarium oxysporum plant pathogenic fungi. HAYATI J Biosci. 2013;20:127–37. doi: https://doi.org/10.4308/hjb.20.3.127

17. Handayani D, Sari HC, Julianti E, Artasasta MA. Endophytic fungus isolated from Zingiber officinale Linn. var. rubrum as a source of antimicrobial compounds. J App Pharm Sci. 2023;13:115–20.

https://doi.org/10.7324/JAPS.2023.134154

18. Putra IPYA, Utami KS, Hardini J, Wirasuta IMAG, Ujam NT, Ariantari NP. Fermentation, bioactivity and molecular identification of endophytic fungi isolated from mangrove Ceriops tagal. Biodiversitas. 2023;24:3091–8. doi: https://doi.org/10.13057/biodiv/d240565

19. CLSI. M100—Performance standards for antimicrobial susceptibility testing. 32nd ed. Wayne, PA: CLSI; 2022

20. Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, et al. Cytotoxicity screening of Thymus vulgaris L. Essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep. 2021;11:13178. doi: https://doi.org/10.1038/s41598-021-92679-x

https://doi.org/10.1038/s41598-021-92679-x

21. Waghulde S, Kale MK, Patil V. Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medicinal plants. Proceedings. 2019;41:47. doi: https://doi.org/10.3390/ecsoc-23-06703

22. Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH. In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispr against breast cancer cell lines, MCF-7 and MDA-MB-231. BMC Complement Altern Med. 2018 Mar 12;18(1):87. doi: https://doi.org/10.1186/s12906-018-2153-5

23. Prayong P, Barusrux S, Weerapreeyakul N. Cytotoxic activity screening of some indigenous thai plants. Fitoterapia. 2008;79:598– 601. doi: https://doi.org/10.1016/j.fitote.2008.06.007

24. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a Universal DNA barcode marker for fungi. Proc Natl Acad Sci U. S. A. 2012;109:6241–6.

https://doi.org/10.1073/pnas.1117018109

25. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H. Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online. 2008;4:193–201. doi: https://doi.org/10.4137/EBO.S653

26. Kang M-J, Choi Y-S, Kim S. A comparison of the ability of fungal internal transcribed spacers and D1/D2 domain regions to accurately identify Candida glabrata clinical isolates using sequence analysis. Biomed Sci Lett. 2018;24:430–4.

https://doi.org/10.15616/BSL.2018.24.4.430

27. Hernández-Restrepo M, Groenewald JZ, Crous PW. Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella. Persoonia. 2016;36:57–82. doi: https://doi.org/10.3767/003158516X688676

28. Li T, Gao JL, Huang JH, Gu L, Zou J, Wu XJ. Phlebiopsis xuefengensis sp. Nov. from Gastrodia elata (Orchidaceae) in Hunan Province, Southern China. S Afr J Bot. 2021;142:299–304.

https://doi.org/10.1016/j.sajb.2021.06.034

29. Kaur R, Saxena S. Penicillium citrinum, a Drought-tolerant endophytic fungus isolated from Wheat (Triticum aestivum L.) leaves with plant growth-promoting abilities. Curr Microbiol. 2023;80:184. doi: https://doi.org/10.1007/s00284-023-03283-3

30. Ashoka GB, Shivanna MB. Antibacterial, antioxidant, and anticancer activities of Penicillium citrinum Thom. Endophytic in Jatropha heynei. J App Pharm Sci. 2023;13:196–207.

https://doi.org/10.7324/JAPS.2023.95958

31. Vu THN, Quach NT, Le PC, Pham QA, Do TT, Chu HH, et al. Bioprospecting endophytic fungi isolated from Cephalotaxus mannii Hook f. as prolific sources of antibacterial, anticancer, and antioxidant agents. Microbiology. 2023;92:284–92. doi: https://doi.org/10.1134/S0026261722602834

32. Wei S, Sang Z, Zhang Y, Wang H, Chen Y, Liu H, et al. Peniciriols A and B, two new citrinin derivatives from an endophytic fungus Penicillum citrinum TJNZ-27. Fitoterapia. 2023;169:105572.

https://doi.org/10.1016/j.fitote.2023.105572

33. Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol Progress. 2012;11:1–34. doi: https://doi.org/10.1007/s11557-011-0777-7

34. Poveda J, Zabalgogeazcoa I, Soengas P, Rodríguez VM, Cartea ME, Abilleira R, et al. Brassica oleracea var. acephala (Kale) improvement by biological activity of root endophytic fungi. Sci Rep. 2020;10:20224.

https://doi.org/10.1038/s41598-020-77215-7

35. de Medeiros LS, Abreu LM, Nielsen A, Ingmer H, Larsen TO, Nielsen KF, et al. Dereplication-guided isolation of depsides Thielavins S–T and lecanorins D–F from the endophytic fungus Setophoma sp. Phytochemistry. 2015;111:154–62. doi: https://doi.org/10.1016/j.phytochem.2014.12.020

36. Sz?cs Z, Plaszkó T, Cziáky Z, Kiss-Szikszai A, Emri T, Bertóti R, et al. Endophytic fungi from the roots of Horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate–myrosinase–isothiocyanate system. BMC Plant Biol. 2018;18:85.

https://doi.org/10.1186/s12870-018-1295-4

37. Fan N-W, Chang H-S, Cheng M-J, Hsieh S-Y, Liu T-W, Yuan G-F, et al. Secondary metabolites from the endophytic fungus Xylaria cubensis. Helv Chim Acta. 2014;97:1689–99. doi: https://doi.org/10.1002/hlca.201400091

38. Caraballo-Rodríguez AM, Mayor CA, Chagas FO, Pupo MT. Amphotericin B as an inducer of griseofulvin-containing guttate in the endophytic fungus Xylaria Cubensis FLe9. Chemoecology. 2017;27:177–85.

https://doi.org/10.1007/s00049-017-0243-3

39. Sica VP, Rees ER, Tchegnon E, Bardsley RH, Raja HA, Oberlies NH. Spatial and temporal profiling of griseofulvin production in Xylaria cubensis using mass spectrometry mapping. Front Microbiol. 2016;7:544. doi: https://doi.org/10.3389/fmicb.2016.00544

40. El-Elimat T, Figueroa M, Raja HA, Graf TN, Swanson SM, Falkinham III JO, et al. Biosynthetically distinct cytotoxic polyketides from Setophoma terrestris. EurJOC. 2015;2015:109–21.

https://doi.org/10.1002/ejoc.201402984

41. Arora D, Chashoo G, Singamaneni V, Sharma N, Gupta P, Jaglan S. Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris. J Appl Microbiol. 2018;124:730–9. doi: https://doi.org/10.1111/jam.13683

42. Chen S, Tian D, Wei J, Li C, Ma Y, Gou X, et al. Citrinin derivatives from Penicillium citrinum Y34 that inhibit α-glucosidase and ATP-citrate lyase. Front Mar Sci. 2022;9:961356.

https://doi.org/10.3389/fmars.2022.961356

43. Chen L, Liu W, Hu X, Huang K, Wu J-L, Zhang Q-Q. Citrinin derivatives from the marine-derived fungus Penicillium citrinum. Chem Pharm Bull. 2011;59:515–7. doi: https://doi.org/10.1248/cpb.59.515

44. Li X, Zhang L, Liu Y, Guo Z, Deng Z, Chen J, et al. A New metabolite from the endophytic fungus Penicillium citrinum. Nat Prod Commun. 2013;8:1934578X1300800.

https://doi.org/10.1177/1934578X1300800510

45. Zhang J, Wang Z, Song Z, Karthik L, Hou C, Zhu G, et al. Brocaeloid D, a novel compound isolated from a wheat pathogenic fungus, Microdochium majus 99049. Synth Syst Biotechnol. 2019;4:173–9. doi: https://doi.org/10.1016/j.synbio.2019.09.001

46. Zhang W, Krohn K, Draeger S, Schulz B. Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. J Nat Prod. 2008;71:1078–81. doi: https://doi.org/10.1021/np800095g

https://doi.org/10.1021/np800095g

47. Gavrilova OP, Orina AS, Kessenikh ED, Gustyleva LK, Savelieva EI, Gogina NN, et al. Diversity of physiological and biochemical characters of Microdochium fungi. C B. 2020;17:e2000294. doi: https://doi.org/10.1002/cbdv.202000294

48. Choi D-C, Ki D-W, Kim J-Y, Lee I-K, Yun B-S. P-Terphenyl glucosides from the culture broth of Phlebiopsis castanea. J Antibiot. 2023;76:52–5. doi: https://doi.org/10.1038/s41429-022-00579-7

https://doi.org/10.1038/s41429-022-00579-7

49. Kälvö D, Menkis A, Broberg A. Secondary metabolites from the root rot biocontrol fungus Phlebiopsis gigantea. Molecules. 2018;23:1417. doi: https://doi.org/10.3390/molecules23061417

50. Ming Q, Huang X, He Y, Qin L, Tang Y, Liu Y, et al. Genome mining and screening for secondary metabolite production in the endophytic fungus Dactylonectria alcacerensis CT-6. Microorganisms. 2023;11:968. doi: https://doi.org/10.3390/microorganisms11040968

https://doi.org/10.3390/microorganisms11040968

51. Klaiklay S, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Buatong J, Bussaban B. Metabolites from the mangrove-derived fungus Xylaria cubensis PSU-MA34. Arch Pharm Res. 2012;35:1127–31. doi: https://doi.org/10.1007/s12272-012-0701-y

52. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5:66. doi: https://doi.org/10.1038/s41572-019-0111-2

https://doi.org/10.1038/s41572-019-0111-2

53. Altun ?, Sonkaya A. The most common side effects experienced by patients were receiving first cycle of chemotherapy. Iran J Public Health. 2018;47:1218–9.

54. Lee K-L, Kuo Y-C, Ho Y-S, Huang Y-H. Triple-negative breast cancer: current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers. 2019;11:1334. doi: https://doi.org/10.3390/cancers11091334

Article Metrics
74 Views 16 Downloads 90 Total

Year

Month

Related Search

By author names