In the present study, we reported eight endophytic fungi isolated from stems, rhizomes, and roots of red ginger (Zingiber officinale var. rubrum), collected from Bali, Indonesia. Molecular biology protocol through amplification of internal transcribed spacer and LSU region led to the identification of six fungal isolates as Microdochium colombiense ZOR-S1-1, Phlebiopsis flavidoalba ZOR-S1-3, Penicillium citrinum ZOR-S1-4.1, Dactylonectria anthuriicola ZOR-Rh1-3, Setophoma terrestris ZOR-Br1-1, and Xylaria cubensis ZOR-Rh1-1. Meanwhile, two fungal isolates, ZOR-S1-4 and ZOR-Br1-2, are remain unidentified. Following rice fermentation of all isolated endophytes, all fungal extracts were subjected to antimicrobial, toxicity, and cytotoxicity assays. In the antimicrobial assay, S. terrestris ZOR-Br1-1 extract showed the most pronounced activity against Staphylococcus aureus ATCC 6538 and Candida albicans ATCC 10231, with MIC values of 31.3 and 15.6 μg/ml. Meanwhile, D. anthuriicola ZOR-Rh1-3 extract revealed the most potent activity in toxicity screening employing the brine shrimp lethality test (BSLT), with an LC50 value of 6.8 μg/ml. When tested further for cytotoxicity against breast cancer cells, MCF-7 and 4T1, extracts of D. anthuriicola ZOR-Rh1-3, P. citrinum ZOR-S1-4.1, unidentified isolates ZOR-S1-4 and ZOR-Br1-2, showed strong to moderate inhibition against both tested cell lines with IC50 values ranging from 14 to 74 μg/ml. In light of the bioactivity of endophytic fungal extracts from red ginger found in this study, investigation on secondary metabolites and their pharmacological action on antimicrobial and cytotoxicity of endophytic S. terrestris ZOR-Br1-1, D. anthuriicola ZOR-Rh1-3, and P. citrinum ZOR-S1-4.1 are of scientific interest for further research. Moreover, this result highlights the bioprospecting opportunity of endophytic fungi associated with medicinal plants as a source of bioactive secondary metabolites.
Ariantari NP, Leliqia NPE, Putra IPYA, Nugraheni N, Jenie RI, Meiyanto E. Endophytic fungi from red ginger (Zingiber officinale var. rubrum) as promising source of antimicrobial and cytotoxic secondary metabolites. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.178823
1. Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, et al. Endophytic fungi: an effective alternative source of plant-derived bioactive compounds for pharmacological studies. JoF. 2022;8:205. doi: https://doi.org/10.3390/jof8020205
2. Rai N, Kumari Keshri P, Verma A, Kamble SC, Mishra P, Barik S, et al. Plant Associated fungal endophytes as a source of natural bioactive compounds. Mycology. 2021;12:139–59. doi: https://doi.org/10.1080/21501203.2020.1870579
3. Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, et al. Fungal endophytes: microfactories of novel bioactive compounds with therapeutic interventions; a comprehensive review on the biotechnological developments in the field of fungal endophytic biology over the last decade. Biomolecules. 2023;13:1038. doi: https://doi.org/10.3390/biom13071038
4. Strobel G. The emergence of endophytic microbes and their biological promise. J F. 2018;4:57. doi: https://doi.org/10.3390/jof4020057
5. Ariantari NP, Frank M, Gao Y, Stuhldreier F, Kiffe-Delf A-L, Hartmann R, et al. Fusaristatins D–F and (7S,8R)-(−)- Chlamydospordiol from Fusarium sp. BZCB-CA, an Endophyte of Bothriospermum chinense. Tetrahedron. 2021;85:132065. doi: https://doi.org/10.1016/j.tet.2021.132065
6. Ariantari NP, Putra IPYA, Leliqia NPE, Yustiantara PS, Proborini MW, Nugraheni N, et al. Antibacterial and cytotoxic secondary metabolites from endophytic fungi Associated with Antidesma bunius Leaves. J Appl Pharm Sci. 2023;13:132–43. doi: https://doi.org/10.7324/JAPS.2023.101347
7. Marwan H, Hayati I, Mulyati S. Effectiveness of biofungicide formula on rhizome rot disease of red ginger and its plant growth. Biodiversitas. 2023;24:2143–8. doi: https://doi.org/10.13057/biodiv/d240425
8. Khafyah N, Dewi ST, Jumain. The effectiveness of red ginger extract (Zingiber officinale var. rubrum) on decreased blood glucose levels in mice (Mus musculus). Ihj. 2023;2:16–21. doi: https://doi.org/10.58344/ihj.v2i1.23
9. Razali N, Dewa A, Asmawi MZ, Mohamed N, Manshor NM. Mechanisms underlying the vascular relaxation activities of Zingiber officinale var. rubrum in thoracic aorta of spontaneously hypertensive ats. J Integr Med. 2020;18:46–58. doi: https://doi.org/10.1016/j.joim.2019.12.003
10. Fajrin FA, Imandasari N, Barki T, Sulistyaningrum G, Afifah, Kristiningrum N, et al. The antioxidant activity of red ginger oil in aloxan-induced painful diabetic neuropathy in mice model. Thai J Pharm Sci. 2019;43:69–75
11. Rialita T, Nurhadi B, Puteri RD. Characteristics of microcapsule of red ginger (Zingiber officinale var. rubrum) essential oil produced from different arabic gum ratios on antimicrobial activity toward Escherichia coli and Staphylococcus aureus. Int J Food Prop. 2018;21:2500–8. doi: https://doi.org/10.1080/10942912.2018.1528455
12. Rinanda T, Isnanda RP, Zulfitri. Chemical analysis of red ginger (Zingiber officinale Roscoe var rubrum) essential oil and its anti-biofilm activity against Candida albicans. Nat Prod Commun. 2018;13:1587– 90. doi: https://doi.org/10.1177/1934578X1801301206
13. Yamauchi K, Natsume M, Yamaguchi K, Batubara I, Mitsunaga T. Structure-activity relationship for vanilloid compounds from extract of Zingiber officinale var rubrum Rhizomes: effect on extracellular melanogenesis inhibitory activity. Med Chem Res. 2019;28:1402–12. doi: https://doi.org/10.1007/s00044-019-02380-y
14. Strobel G, Daisy B, Castillo U, Harper J. Natural products from endophytic microorganisms. J Nat Prod. 2004;67:257–68. doi: https://doi.org/10.1021/np030397v
15. Caruso G, Abdelhamid MT, Kalisz A, Sekara A. Linking endophytic fungi to medicinal plants therapeutic activity. A case study on Asteraceae. Agriculture. 2020;10:286.
16. Ginting RCB, Sukarno N, Widyastuti U, Darusman LK, Kanaya S. Diversity of endophytic fungi from red ginger (Zingiber officinale Rosc.) plant and their inhibitory effect to Fusarium oxysporum plant pathogenic fungi. HAYATI J Biosci. 2013;20:127–37. doi: https://doi.org/10.4308/hjb.20.3.127
17. Handayani D, Sari HC, Julianti E, Artasasta MA. Endophytic fungus isolated from Zingiber officinale Linn. var. rubrum as a source of antimicrobial compounds. J App Pharm Sci. 2023;13:115–20.
18. Putra IPYA, Utami KS, Hardini J, Wirasuta IMAG, Ujam NT, Ariantari NP. Fermentation, bioactivity and molecular identification of endophytic fungi isolated from mangrove Ceriops tagal. Biodiversitas. 2023;24:3091–8. doi: https://doi.org/10.13057/biodiv/d240565
19. CLSI. M100—Performance standards for antimicrobial susceptibility testing. 32nd ed. Wayne, PA: CLSI; 2022
20. Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, et al. Cytotoxicity screening of Thymus vulgaris L. Essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep. 2021;11:13178. doi: https://doi.org/10.1038/s41598-021-92679-x
21. Waghulde S, Kale MK, Patil V. Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medicinal plants. Proceedings. 2019;41:47. doi: https://doi.org/10.3390/ecsoc-23-06703
22. Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH. In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispr against breast cancer cell lines, MCF-7 and MDA-MB-231. BMC Complement Altern Med. 2018 Mar 12;18(1):87. doi: https://doi.org/10.1186/s12906-018-2153-5
23. Prayong P, Barusrux S, Weerapreeyakul N. Cytotoxic activity screening of some indigenous thai plants. Fitoterapia. 2008;79:598– 601. doi: https://doi.org/10.1016/j.fitote.2008.06.007
24. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a Universal DNA barcode marker for fungi. Proc Natl Acad Sci U. S. A. 2012;109:6241–6.
25. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H. Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online. 2008;4:193–201. doi: https://doi.org/10.4137/EBO.S653
26. Kang M-J, Choi Y-S, Kim S. A comparison of the ability of fungal internal transcribed spacers and D1/D2 domain regions to accurately identify Candida glabrata clinical isolates using sequence analysis. Biomed Sci Lett. 2018;24:430–4.
27. Hernández-Restrepo M, Groenewald JZ, Crous PW. Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella. Persoonia. 2016;36:57–82. doi: https://doi.org/10.3767/003158516X688676
28. Li T, Gao JL, Huang JH, Gu L, Zou J, Wu XJ. Phlebiopsis xuefengensis sp. Nov. from Gastrodia elata (Orchidaceae) in Hunan Province, Southern China. S Afr J Bot. 2021;142:299–304.
29. Kaur R, Saxena S. Penicillium citrinum, a Drought-tolerant endophytic fungus isolated from Wheat (Triticum aestivum L.) leaves with plant growth-promoting abilities. Curr Microbiol. 2023;80:184. doi: https://doi.org/10.1007/s00284-023-03283-3
30. Ashoka GB, Shivanna MB. Antibacterial, antioxidant, and anticancer activities of Penicillium citrinum Thom. Endophytic in Jatropha heynei. J App Pharm Sci. 2023;13:196–207.
31. Vu THN, Quach NT, Le PC, Pham QA, Do TT, Chu HH, et al. Bioprospecting endophytic fungi isolated from Cephalotaxus mannii Hook f. as prolific sources of antibacterial, anticancer, and antioxidant agents. Microbiology. 2023;92:284–92. doi: https://doi.org/10.1134/S0026261722602834
32. Wei S, Sang Z, Zhang Y, Wang H, Chen Y, Liu H, et al. Peniciriols A and B, two new citrinin derivatives from an endophytic fungus Penicillum citrinum TJNZ-27. Fitoterapia. 2023;169:105572.
33. Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol Progress. 2012;11:1–34. doi: https://doi.org/10.1007/s11557-011-0777-7
34. Poveda J, Zabalgogeazcoa I, Soengas P, Rodríguez VM, Cartea ME, Abilleira R, et al. Brassica oleracea var. acephala (Kale) improvement by biological activity of root endophytic fungi. Sci Rep. 2020;10:20224.
35. de Medeiros LS, Abreu LM, Nielsen A, Ingmer H, Larsen TO, Nielsen KF, et al. Dereplication-guided isolation of depsides Thielavins S–T and lecanorins D–F from the endophytic fungus Setophoma sp. Phytochemistry. 2015;111:154–62. doi: https://doi.org/10.1016/j.phytochem.2014.12.020
36. Sz?cs Z, Plaszkó T, Cziáky Z, Kiss-Szikszai A, Emri T, Bertóti R, et al. Endophytic fungi from the roots of Horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate–myrosinase–isothiocyanate system. BMC Plant Biol. 2018;18:85.
37. Fan N-W, Chang H-S, Cheng M-J, Hsieh S-Y, Liu T-W, Yuan G-F, et al. Secondary metabolites from the endophytic fungus Xylaria cubensis. Helv Chim Acta. 2014;97:1689–99. doi: https://doi.org/10.1002/hlca.201400091
38. Caraballo-Rodríguez AM, Mayor CA, Chagas FO, Pupo MT. Amphotericin B as an inducer of griseofulvin-containing guttate in the endophytic fungus Xylaria Cubensis FLe9. Chemoecology. 2017;27:177–85.
39. Sica VP, Rees ER, Tchegnon E, Bardsley RH, Raja HA, Oberlies NH. Spatial and temporal profiling of griseofulvin production in Xylaria cubensis using mass spectrometry mapping. Front Microbiol. 2016;7:544. doi: https://doi.org/10.3389/fmicb.2016.00544
40. El-Elimat T, Figueroa M, Raja HA, Graf TN, Swanson SM, Falkinham III JO, et al. Biosynthetically distinct cytotoxic polyketides from Setophoma terrestris. EurJOC. 2015;2015:109–21.
41. Arora D, Chashoo G, Singamaneni V, Sharma N, Gupta P, Jaglan S. Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris. J Appl Microbiol. 2018;124:730–9. doi: https://doi.org/10.1111/jam.13683
42. Chen S, Tian D, Wei J, Li C, Ma Y, Gou X, et al. Citrinin derivatives from Penicillium citrinum Y34 that inhibit α-glucosidase and ATP-citrate lyase. Front Mar Sci. 2022;9:961356.
43. Chen L, Liu W, Hu X, Huang K, Wu J-L, Zhang Q-Q. Citrinin derivatives from the marine-derived fungus Penicillium citrinum. Chem Pharm Bull. 2011;59:515–7. doi: https://doi.org/10.1248/cpb.59.515
44. Li X, Zhang L, Liu Y, Guo Z, Deng Z, Chen J, et al. A New metabolite from the endophytic fungus Penicillium citrinum. Nat Prod Commun. 2013;8:1934578X1300800.
45. Zhang J, Wang Z, Song Z, Karthik L, Hou C, Zhu G, et al. Brocaeloid D, a novel compound isolated from a wheat pathogenic fungus, Microdochium majus 99049. Synth Syst Biotechnol. 2019;4:173–9. doi: https://doi.org/10.1016/j.synbio.2019.09.001
46. Zhang W, Krohn K, Draeger S, Schulz B. Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. J Nat Prod. 2008;71:1078–81. doi: https://doi.org/10.1021/np800095g
47. Gavrilova OP, Orina AS, Kessenikh ED, Gustyleva LK, Savelieva EI, Gogina NN, et al. Diversity of physiological and biochemical characters of Microdochium fungi. C B. 2020;17:e2000294. doi: https://doi.org/10.1002/cbdv.202000294
48. Choi D-C, Ki D-W, Kim J-Y, Lee I-K, Yun B-S. P-Terphenyl glucosides from the culture broth of Phlebiopsis castanea. J Antibiot. 2023;76:52–5. doi: https://doi.org/10.1038/s41429-022-00579-7
49. Kälvö D, Menkis A, Broberg A. Secondary metabolites from the root rot biocontrol fungus Phlebiopsis gigantea. Molecules. 2018;23:1417. doi: https://doi.org/10.3390/molecules23061417
50. Ming Q, Huang X, He Y, Qin L, Tang Y, Liu Y, et al. Genome mining and screening for secondary metabolite production in the endophytic fungus Dactylonectria alcacerensis CT-6. Microorganisms. 2023;11:968. doi: https://doi.org/10.3390/microorganisms11040968
51. Klaiklay S, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Buatong J, Bussaban B. Metabolites from the mangrove-derived fungus Xylaria cubensis PSU-MA34. Arch Pharm Res. 2012;35:1127–31. doi: https://doi.org/10.1007/s12272-012-0701-y
52. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5:66. doi: https://doi.org/10.1038/s41572-019-0111-2
53. Altun ?, Sonkaya A. The most common side effects experienced by patients were receiving first cycle of chemotherapy. Iran J Public Health. 2018;47:1218–9.
54. Lee K-L, Kuo Y-C, Ho Y-S, Huang Y-H. Triple-negative breast cancer: current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers. 2019;11:1334. doi: https://doi.org/10.3390/cancers11091334
Year
Month