The recombinant yeast Pichia pastoris produced insulin precursor (IP) by secreting it extracellularly. Synthetic prepro-leaders were developed for IP secretory expression in Saccharomyces cerevisiae, and we employed a P. pastoris recombinant clone (CL-4) with a synthetic IP-encoding gene in its genome to generate IP. The secreted IP was analyzed using LC-MS/MS analysis to compare it with the theoretical molecular weight. A pulse-batch method was utilized to produce the IP in a 2 l bioreactor. The purified IP was further converted into mature human insulin (HI) through a one-step transpeptidation reaction. The HI was then subjected to a series of steps including crystallization, deprotection, and purification. The IP purification recovery increased by 90% as compared to our previous study. The mass spectrometry (MS) analysis of the IP yielded an identical theoretical molecular weight value of 7072.10 Da. Furthermore, a specific molecular species of 5839.56 Da was detected by intact MS in the purified 1C5 fraction, which is similar to the oxidized form of HI. Based on our in vitro glucose uptake assay, the 1C5 fraction stimulated glucose uptake at a ratio of 0.86 compared to USP HI, indicating the functional presence of HI in the 1C5 fraction.
Nurdiani D, Putro EW, Septisetyani EP, Utami N, Hariyatun H, Prasetyaningrum PW, Kusharyoto W. Characterization of functional human insulin produced using the Pichia pastoris expression system. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.180473
1. Yanagita M, Nakayama K, Takeuchi T. Processing of mutated proinsulin with tetrabasic cleavage sites to bioactive insulin in the non-endocrine cell line, COS-7. FEBS Lett. 1992;311:55–9. doi: https://doi.org/10.1016/0014-5793(92)81366-T
2. Arakawa T, Yu J, Chong DKX, Hough J, Engen PC, Langridge WHR. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat Biotechnol. 1998;16:934–8. doi: https://doi.org/10.1038/nbt1098-934
3. Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren HJ, Markley NA, et al. Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J. 2006;4:77–85. doi: https://doi.org/10.1111/j.1467-7652.2005.00159.x
4. Boyhan D, Daniell H. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J. 2011;9:585–98. doi: https://doi.org/10.1111/j.1467-7652.2010.00582.x
5. Baeshen MN, Bouback TAF, Alzubaidi MA, Bora RS, Alotaibi MAT, Alabbas OTO, et al. Expression and purification of C-peptide containing insulin using Pichia pastoris expression system. Biomed Res Int. 2016;2016:2005–8. doi: https://doi.org/10.1155/2016/3423685
6. Nilsson J, Jonasson P, Samuelsson E, Ståhl S, Uhlén M. Integrated production of human insulin and its C-peptide. J Biotechnol. 1996;48:241–50. doi: https://doi.org/10.1016/0168-1656(96)01514-3
7. Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, et al. Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci U S A. 1986;83:6766–70. doi: https://doi.org/10.1073/pnas.83.18.6766
8. Kjeldsen T. Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol. 2000;54:277–86. doi: https://doi.org/10.1007/s002530000402
9. Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MMM, Ramadan HAI, et al. Cell factories for insulin production. Microb Cell Fact. 2014;13:1–9. doi: https://doi.org/10.1186/s12934-014-0141-0
10. Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98:5301–17. doi: https://doi.org/10.1007/s00253-014-5732-5
11. Kjeldsen T, Pettersson AF, Hach M. Secretory expression and characterization of insulin in Pichia pastoris. Biotechnol Appl Biochem. 1999;29(1):79–86. https://doi.org/10.1111/j.1470-8744.1999.tb01151.x
12. Wang Y, Liang ZH, Zhang YS, Yao SY, Xu YG, Tang YH, et al. Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastoris and a simple procedure for purifying the expression product. Biotechnol Bioeng. 2001;73:74–9. doi: https://doi.org/10.1002/1097-0290(20010405)73:1<74::AID-BIT1038>3.0.CO;2-V
13. Xie T, Liu Q, Xie F, Liu H, Zhang Y. Secretory expression of insulin precursor in Pichia pastoris and simple procedure for producing recombinant human insulin. Prep Biochem Biotechnol. 2008;38:308–17. doi: https://doi.org/10.1080/10826060802165147
14. Gurramkonda C, Polez S, Skoko N, Adnan A, Gäbel T, Chugh D, et al. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact. 2010;9:1–11. doi: https://doi.org/10.1186/1475-2859-9-31
15. Polez S, Origi D, Zahariev S, Guarnaccia C, Tisminetzky SG, Skoko N, et al. A simplified and efficient process for insulin production in Pichia pastoris. PLoS One. 2016;11:1–15. doi: https://doi.org/10.1371/journal.pone.0167207
16. Liu H, Zhou X, Tian S, Hao X, You J, Zhang Y. Two-step transpeptidation of the insulin precursor expressed in Pichia pastoris to insulin ester via trypsin-catalyzed cleavage and coupling. Biotechnol Appl Biochem. 2014;61:408–17. doi: https://doi.org/10.1002/bab.1186
17. Morihara K, Ueno Y, Sakina K. Influence of temperature on the enzymic semisynthesis of human insulin by coupling and transpeptidation methods. Biochem J. 1986;240:803–10. doi: https://doi.org/10.1042%2Fbj2400803
18. Kjeldsen T, Ludvigsen S, Diers I, Balschmidt P, Sorensen AR, Kaarsholm NC. Engineering-enhanced protein secretory expression in yeast with application to insulin. J Biol Chem. 2002;277:18245–8. doi: https://doi.org/10.1074/jbc.C200137200
19. Nurdiani D, Hariyatun H, Kusharyoto W. Secretory expression of human insulin precursor in Pichia pastoris employing truncated α-factor leader sequence and a short C-peptide. Indones J Biotechnol. 2018;23:102–8. doi: https://doi.org/10.22146/ijbiotech.38958
20. Nurdiani D, Hariyatun H, Utami N, Putro EW, Kusharyoto W. Enhancement in human insulin precursor secretion by Pichia pastoris through modification of expression conditions. HAYATI J Biosci. 2021;29:22–30. doi: https://doi.org/10.4308/HJB.29.1.22-30
21. Putro EW, Nurdiani D, Hariyatun H, Utami N, Kusharyoto W, Juanssilfero AB, et al. Evaluating pulses and modified fed-batch feeding of methanol to increase expression level of human insulin precursor in Pichia pastoris high-density cultivation. Int J Adv Sci Eng Inf Technol. 2022;12:1001–7. doi: https://doi.org/10.18517/ijaseit.12.3.15109
22. Nurdiani D, Hariyatun H, Utami N, Wahyu Putro E, Kusharyoto W. Selecting Pichia pastoris recombinant clones for higher secretion of human insulin precursor into the culture supernatant. IOP Conf Ser Earth Environ Sci. 2020;439:012017. doi: https://doi.org/10.1088/1755-1315/439/1/012017
23. Invitrogen Corporation. User manual—EasySelectTM Pichia Expression Kit. Life Technol Rev. 2010; Manual part no. 25-0172: MAN0000042.
24. Wu J, Gong G, Han S, Zhang W, Hu Y, Xie L. Expression, purification, and characterization of the degludec precursor DesB30. Protein Expr Purif. 2019;161:28–39. doi: https://doi.org/10.1016/j.pep.2019.04.010
25. Haider SR, Reid HJ, Sharp BL. Tricine-SDS-PAGE. Methods Mol Biol. 2012;869:81–91. doi: https://doi.org/10.1007/978-1-61779-821-48
26. Nurdiani D, Hariyatun H, Utami N, Putro EW, Kusharyoto W. Stability analysis of a Pichia pastoris recombinant clone expressing human insulin precursor. IOP Conf Ser Earth Environ Sci. 2020;572:012008. doi: https://doi.org/10.1088/1755-1315/572/1/012008
27. Putro EW, Nurdiani D, Hariyatun H, Utami N, Kusharyoto W. Capture and intermediate purification of human insulin precursor from Pichia pastoris culture using cation exchange chromatography. IOP Conf Ser Earth Environ Sci. 2021;762:012028. doi: https://doi.org/10.1088/1755-1315/762/1/012028
28. Liu H, Zhou X, Xie F, You J, Zhang Y. An efficient trypsin digestion strategy for improving DesB30 productivity from recombinant human insulin precursor fusion protein. Process Biochem. 2013;48:965–71. doi: https://doi.org/10.1016/j.procbio.2013.04.004
29. Hack R, Rueggeberg S, Schneider L, Mayert D, Tennagels N, Welte S, et al. Progress towards the replacement of the rabbit blood sugar bioidentity assay by an in vitro test for batch release of insulins in quality control. ALTEX. 2017;34:565–6. doi: https://doi.org/10.14573/altex.1708091
30. Hulett NA, Scalzo RL, Reusch JEB. Glucose uptake by skeletal muscle within the contexts of type 2 diabetes and exercise: an integrated approach. Nutrients. 2022;14. doi: https://doi.org/10.3390/nu14030647
31. Stump CS, Henriksen EJ, Wei Y, Sowers JR. The metabolic syndrome: role of skeletal muscle metabolism. Ann Med. 2006;38:389–402. doi: https://doi.org/10.1080/07853890600888413
32. Evans PL, McMillin SL, Weyrauch LA, Witczak CA. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients. 2019;11:1–24. doi: https://doi.org/10.3390/nu11102432
33. Leney SE, Tavaré JM. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. J Endocrinol. 2009;203:1–18. doi: https://doi.org/10.1677/JOE-09-0037
34. Wong CY, Al-Salami H, Dass CR. C2C12 Cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol. 2020;72:1667–93. doi: https://doi.org/10.1111/jphp.13359
35. Sarabia V, Lam L, Burdett E, Leiter L, Klip A. Glucose transport in human skeletal muscle cells in culture. J Clin Invest. 1992;90:1386–95. doi: https://doi.org/10.1172/jci116005
36. International Diabetes Federation-IDF. Indonesia diabetes report 2000–2045. 10th ed. Brussels, Belgium: IDF Diabetes Atlas [Internet]; 2021 [updated 2022; cited 2024 Apr 01]. Available from: https://diabetesatlas.org/data/en/country/94/id.html
Year
Month