Integrating ligand and structure-based discovery approaches to unravel potential novel glyoxalase-I inhibitors

Roa’a Bani-Khalaf Qosay Al-Balas Soraya Alnabulsi   

Open Access   

Published:  Aug 12, 2024

DOI: 10.7324/JAPS.2024.193801
Abstract

The early 1900s discovery of the glyoxalase system revealed its numerous biological functions, including cancer. The conversion of harmful ketoaldehydes like methylglyoxal into nontoxic metabolites by this mechanism is crucial. Cells maintain their physiological functions through this procedure. Blocking this pathway in cancer cells causes hazardous chemicals to accumulate, triggering apoptosis. The molecular modeling component of this study has employed the following techniques: ligand-based drug design, structure-based drug design, ligand-pharmacophore mapping for zinc binding groups, and docking using the CDOCKER protocol. The initial step involved gathering the structures of glo-inhibitors from existing literature. These structures were then divided into two sets: a “training set” used to construct the pharmacophores, and a “test set” used to validate the created pharmacophores. Subsequently, the validated pharmacophores were employed to conduct a search in the ASINEX® commercial chemical repository, with the aim of identifying molecules that conform to these pharmacophores. The retrieved compounds underwent a thorough screening process to determine their priority as potent inhibitors. This stage has employed molecular docking and “calculate total binding energy (TBE)” to select the best candidates for the purchasing process. After buying the compounds, their glo-I inhibition and IC50 values were tested in vitro. Overall, 15 promising compounds were found. Four of the 15 compounds exhibited in vitro activity. The most active molecule, BAS00323528, having a thiazolidinedione scaffold, had an IC50 value of 2.79 μM.


Keyword:     Glyoxalase-I common feature pharmacophore docking ROC analysis Zinc Binding Group


Citation:

Bani-Khalaf R, Al-Balas Q, Alnabulsi S. Integrating ligand and structure-based discovery approaches to unravel potential novel glyoxalase-I inhibitors. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.193801

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. WHO. World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer

2. Saini A, Kumar M, Bhatt S, Saini V, Malik, A. Cancer causes and treatments. Int J Pharm Sci Res. 2020;11:3121-34.

3. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1-2):43-73. https://doi.org/10.1615/CritRevOncog.v18.i1-2.40

4. Aziz NM, Rowland JH. Trends and advances in cancer survivorship research: challenge and opportunity. Semin Radiat Oncol. 2003 Jul;13(3):248-66. https://doi.org/10.1016/S1053-4296(03)00024-9

5. Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 1990 Jul 1;269(1):1-11. https://doi.org/10.1042/bj2690001

6. Thornalley PJ. The glyoxalase system in health and disease. Mol Aspects Med. 1993;14(4):287-371. https://doi.org/10.1016/0098-2997(93)90002-U

7. Morgenstern J, Campos Campos M, Nawroth P, Fleming T. The glyoxalase system-new insights into an ancient metabolism. antioxidants (basel). 2020 Oct 1;9(10):939. doi: 10.3390/antiox9100939 https://doi.org/10.3390/antiox9100939

8. Antognelli C, Talesa VN. Glyoxalases in urological malignancies. Int J Mol Sci. 2018 Jan 31;19(2):415. https://doi.org/10.3390/ijms19020415

9. Chang T, Wu L. Methylglyoxal, oxidative stress, and hypertension. Can J Physiol Pharmacol. 2006 Dec;84(12):1229-38. https://doi.org/10.1139/y06-077

10. Toyoda Y, Erkut C, Pan-Montojo F, Boland S, Stewart MP, Müller DJ, et al. Products of the Parkinson’s disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. Biol Open. 2014 Jul 25;3(8):777-84. https://doi.org/10.1242/bio.20149399

11. Rabbani N, Thornalley PJ. Glyoxalase 1 modulation in obesity and diabetes. Antioxid Redox Signal. 2019 Jan 20;30(3):354-374. https://doi.org/10.1089/ars.2017.7424

12. Rabbani N, Thornalley PJ. Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol. 2011 May;22(3):309-17. https://doi.org/10.1016/j.semcdb.2011.02.015

13. Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B. Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs. 2008 Oct;17(10):1533-45. https://doi.org/10.1517/13543784.17.10.1533

14. Geng X, Ma J, Zhang F, Xu C. Glyoxalase I in tumor cell proliferation and survival and as a potential target for anticancer therapy. Oncol Res Treat. 2014;37(10):570-4. https://doi.org/10.1159/000367800

15. Thornalley PJ. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification—a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol. 1996 Jun;27(4):565-73. https://doi.org/10.1016/0306-3623(95)02054-3

16. Al-Balas Q, Hassan M, Al-Oudat B, Alzoubi H, Mhaidat N, Almaaytah A. Generation of the first structure-based pharmacophore model containing a selective “zinc binding group” feature to identify potential glyoxalase-1 inhibitors. Molecules. 2012 Nov 22;17(12):13740-58. https://doi.org/10.3390/molecules171213740

17. Al-Balas QA, Hassan MA, Al-Shar’i NA, Mhaidat NM, Almaaytah AM, Al-Mahasneh FM, et al. Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anticancer agents. Drug Des Devel Ther. 2016 Aug 17;10:2623-9. https://doi.org/10.2147/DDDT.S110997

18. Cameron AD, Olin B, Ridderström M, Mannervik B, Jones TA. Crystal structure of human glyoxalase I—evidence for gene duplication and 3D domain swapping. EMBO J. 1997 Jun 16;16(12):3386-95. https://doi.org/10.1093/emboj/16.12.3386

19. Chiba T, Ohwada J, Sakamoto H, Kobayashi T, Fukami TA, Irie M, et al. Design and evaluation of azaindole-substituted N-hydroxypyridones as glyoxalase I inhibitors. Bioorg Med Chem Lett. 2012 Dec 15;22(24):7486-9. https://doi.org/10.1016/j.bmcl.2012.10.045

20. Yadav A, Kumar R, Sunkaria A, Singhal N, Kumar M, Sandhir R. Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies. J Biomol Struct Dyn. 2016 May;34(5):993-1007. https://doi.org/10.1080/07391102.2015.1064830

21. Al-Balas QA, Hassan MA, Al-Shar’i NA, Al Jabal GA, Almaaytah AM. Recent advances in glyoxalase-I inhibition. Mini Rev Med Chem. 2019;19(4):281-91. https://doi.org/10.2174/1389557518666181009141231

22. Santarius T, Bignell GR, Greenman CD, Widaa S, Chen L, Mahoney CL, et al. GLO1-A novel amplified gene in human cancer. Genes Chromosomes Cancer. 2010 Aug;49(8):711-25. https://doi.org/10.1002/gcc.20784

23. Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, et al. Tight junction proteins and signaling pathways in cancer and inflammation: a functional crosstalk. Front Physiol. 2019 Jan 23;9:1942. https://doi.org/10.3389/fphys.2018.01942

24. Yang YX, Chen ZC, Zhang GY, Yi H, Xiao ZQ. A subcelluar proteomic investigation into vincristine-resistant gastric cancer cell line. J Cell Biochem. 2008 Jun 1;104(3):1010-21. https://doi.org/10.1002/jcb.21687

25. Audat SA, Al-Balas QA, Al-Oudat BA, Athamneh MJ, Bryant-Friedrich A. Design, synthesis and biological evaluation of 1,4-benzenesulfonamide derivatives as glyoxalase I inhibitors. Drug Des Devel Ther. 2022 Mar 28;16:873-85. https://doi.org/10.2147/DDDT.S356621

26. Jin T, Zhao L, Wang HP, Huang ML, Yue Y, Lu C, Zheng ZB. Recent advances in the discovery and development of glyoxalase I inhibitors. Bioorg Med Chem. 2020 Feb 15;28(4):115243. https://doi.org/10.1016/j.bmc.2019.115243

27. Usami M, Ando K, Shibuya A, Takasawa R, Yokoyama H. Crystal structures of human glyoxalase I and its complex with TLSC702 reveal inhibitor binding mode and substrate preference. FEBS Lett. 2022 Jun;596(11):1458-67. https://doi.org/10.1002/1873-3468.14344

28. Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, et al. Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins. 2013 Dec;81(12):2096-105. https://doi.org/10.1002/prot.24422

29. Bacilieri M, Moro S. Ligand-based drug design methodologies in drug discovery process: an overview. Curr Drug Discov Technol. 2006 Sep;3(3):155-65. https://doi.org/10.2174/157016306780136781

30. Wilson GL, Lill MA. Integrating structure-based and ligand-based approaches for computational drug design. Future Med Chem. 2011 Apr;3(6):735-50. https://doi.org/10.4155/fmc.11.18

31. Kutlushina A, Khakimova A, Madzhidov T, Polishchuk P. Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures. Molecules. 2018 Nov 27;23(12):3094. https://doi.org/10.3390/molecules23123094

32. Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010 Jun;15(11-12):444-50. https://doi.org/10.1016/j.drudis.2010.03.013

33. Debnath AK. Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex dihydrofolate reductase. J Med Chem. 2002 Jan 3;45(1):41-53. https://doi.org/10.1021/jm010360c

34. Youngstrom EA. A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: we are ready to ROC. J Pediatr Psychol. 2014 Mar;39(2):204-21. https://doi.org/10.1093/jpepsy/jst062

35. Vyas VK, Ghate M, Goel A. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors. J Mol Graph Model. 2013 May;42:17-25. https://doi.org/10.1016/j.jmgm.2013.01.010

36. Zhou Y, Di B, Niu MM. Structure-based pharmacophore design and virtual screening for novel tubulin inhibitors with potential anticancer activity. Molecules. 2019 Sep 1;24(17):3181. https://doi.org/10.3390/molecules24173181

37. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015 May;10(5):449-61. https://doi.org/10.1517/17460441.2015.1032936

38. Tirado-Rives J, Jorgensen WL. Contribution of conformer focusing to the uncertainty in predicting free energies for protein-ligand binding. J Med Chem. 2006 Oct 5;49(20):5880-4. https://doi.org/10.1021/jm060763i

39. Al-Balas QA, Al-Sha’er MA, Hassan MA, Al Zou’bi E. Identification of the first “two digit nano-molar” inhibitors of the human glyoxalase-I enzyme as potential anticancer agents. Med Chem. 2022;18(4):473-83. https://doi.org/10.2174/1573406417666210714170403

Article Metrics
80 Views 9 Downloads 89 Total

Year

Month

Related Search

By author names