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INTRODUCTION 

Cancer statistics
Cancer is widely recognized as a prominent 

contributor to global mortality, resulting in approximately 10 
million fatalities and 18.1 million confirmed cases worldwide, 
as reported by the World Health Organization [1]. The aberrant 
proliferation of cells, resulting from genetic and epigenetic 
changes, can lead to the spread of these abnormal cells 
throughout the body, migrating from one area to another [2,3].

The identification of the optimal therapy is hindered 
by several factors, such as the unique characteristics of each 

cancer type, the diverse reactions to treatment, and notably 
the absence of selectivity, which hinders the ability to target 
cancerous cells exclusively while sparing healthy tissues. As a 
result, there is a growing need to discover a new reliable target 
for cancer treatment [4]. 

Glyoxalase system
The glyoxalase system has long been a subject of 

attention as a possible target for the development of new anticancer 
drugs. The glyoxalase complex consists of two enzymes: 
glyoxalase I (Glo-I) and glyoxalase II (Glo-II). Both enzymes 
function as detoxifying agents for deleterious byproducts, such 
as methylglyoxal (MG), which are generated during the body’s 
regular metabolic processes, such as glycolysis [5–7]. MG and 
glutathione (GSH) undergo a nonenzymatic reaction to produce 
a hemi-thioacetal substrate. This substrate is then catalyzed by 
Glo-I to make S, D-lactoylglutathione, which serves as a substrate 
for Glo-II. Glo-II hydrolyzes the thioester into the less hazardous 
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ABSTRACT
The early 1900s discovery of the glyoxalase system revealed its numerous biological functions, including cancer. 
The conversion of harmful ketoaldehydes like methylglyoxal into nontoxic metabolites by this mechanism is crucial. 
Cells maintain their physiological functions through this procedure. Blocking this pathway in cancer cells causes 
hazardous chemicals to accumulate, triggering apoptosis. The molecular modeling component of this study has 
employed the following techniques: ligand-based drug design, structure-based drug design, ligand-pharmacophore 
mapping for zinc binding groups, and docking using the CDOCKER protocol. The initial step involved gathering the 
structures of glo-inhibitors from existing literature. These structures were then divided into two sets: a “training set” 
used to construct the pharmacophores, and a “test set” used to validate the created pharmacophores. Subsequently, 
the validated pharmacophores were employed to conduct a search in the ASINEX® commercial chemical repository, 
with the aim of identifying molecules that conform to these pharmacophores. The retrieved compounds underwent 
a thorough screening process to determine their priority as potent inhibitors. This stage has employed molecular 
docking and “calculate total binding energy (TBE)” to select the best candidates for the purchasing process. After 
buying the compounds, their glo-I inhibition and IC50 values were tested in vitro. Overall, 15 promising compounds 
were found. Four of the 15 compounds exhibited in vitro activity. The most active molecule, BAS00323528, having 
a thiazolidinedione scaffold, had an IC50 value of 2.79 µM.
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the poisonous MG. The Glo-I enzyme plays a crucial function 
in safeguarding cells against the harmful effects of MG. Its 
increased expression in tumor cells has been identified as 
a key component of their survival strategy [22, 23]. This 
survival strategy has been observed in various types of 
tumors, including breast cancer, gastric cancer, colon cancer, 
and bladder cancer [8, 24]. Furthermore, there is a correlation 
between Glo-I and chemotherapy in relation to the multidrug 
resistance of cancer. The results of these  studies  have 
identified the Glo-I enzyme as a promising candidate for the 
creation of new and innovative anticancer drugs  functions 
as a Glo-I inhibitor, while there are two categories of Glo-I 
inhibitors: GSH-based inhibitors and non GSH-based 
inhibitors [12, 25–27]. 

Computer aided drug design (CADD) utilizes the 
three-dimensional structure and shape of the target binding 
site to assess and create novel ligands and drugs by considering 
their interactions [28]. The subcategories of CADD include 
Structure-based drug design (SBDD) and ligand-based drug 
design (LBDD). SBDD focuses on identifying a suitable 
therapeutic target and acquiring its structural information. 
On the other hand, LBDD is employed when the three-
dimensional structure of the protein is not accessible, and the 

D-lactic acid (Fig. 1) [5,8]. Glo-I is overexpressed in these cells 
because most tumor cells have enhanced metabolic activity, 
which raises intracellular hazardous compounds (including MG) 
[9,10]. Furthermore, there is a correlation between Glo-I and 
chemotherapy in combating multidrug resistance in cancer [11]. 
The results identified the Glo-I enzyme as a promising target for 
the development of anticancer medicines [12].

Active site geometry
The majority of tumor cells demonstrate augmented 

glycolytic activity, resulting in higher levels of hazardous compounds 
such as MG within the cells [13]. Tumor cells enhance the expression 
and activity of the glyoxalase system, specifically Glo-I, to lower the 
intracellular levels of hazardous metabolites. This is done to prevent 
cellular growth arrest and ensure continued growth [14].

Glo-I is a protein composed of two subunits with a 
molecular mass of 42 kDa. It is encoded  by the human Glo-I 
gene and belongs to the category of enzymes that require zinc 
ions for their activity. An analysis was conducted on the active 
site to determine the essential characteristics needed for optimal 
complementarity between the enzyme and inhibitor [15]. Three 
essential criteria were identified as crucial: a deeply hydrophobic 
cavity capable of accommodating a hydrophobic entity, a region 
that binds zinc and forms a complex with Zn2+, and a positively 
charged entrance to the active site that can electrostatically bind 
to negatively charged groups in inhibitors (Figs. 2 and 3) [16,17]. 

The active site entryway is encircled by the amino 
acids Lys150, Arg37, Arg122, and Lys156. Once they acquire 
a positive charge, they will engage in electrostatic interactions 
with the inhibitors. Simultaneously, the zinc atom located at the 
core of the active site interacts with Glu172B, Gln33A, His126B, 
and Glu99A, resulting in the formation of various coordination 
geometries such as octahedral, square pyramidal, or trigonal 
bipyramidal. Finally, there is a significant hydrophobic cavity 
located deep within the active site that cannot be reached by 
solvents. This cavity is delineated by the amino acids Leu92, 
Phe71, Met179, Leu160, Leu69, and Phe62 [18–21].

Study rationale
Tumors have a high demand for glucose to fuel their 

rapid growth, leading to the generation of large amounts of 

Figure 1. Illustration of the process of detoxifying MG through the glyoxalase 
system. 

Figure 2. Displays the active site of Glo-I, illustrating the key locations for 
inhibitor bindings in 3D structure (N-Hydroxypyridone co-crystalized ligand 
bound in bidentate geometry to zinc atom at the active site from PDB 3W0T).

Figure 3. Cartoon representation of Glo-I, using the PDB code 7wt2 and a 
resolution of 2 Å (TLSC702 co-crystalized ligand bound to zinc atom at the two 
active sites from PDB 7WT0).
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data is derived from a set of active ligands that interact with 
a specific target, such as an enzyme or a receptor [29,30]. 
LBDD has emerged as a crucial computational method 
for drug development in cases where a macromolecular 
target structure is unavailable. Usually, this approach 
entails determining common chemical properties based 
on the three-dimensional arrangements of a set of known 
ligands that are essential for interacting with a particular 
macromolecular target [31]. Both techniques were employed 
in the current study. The LBDD was employed to generate 
reliable pharmacophores, which were subsequently utilized 
to retrieve corresponding chemicals from a commercial 
database. Subsequently, the candidate compounds obtained 
via LBDD were submitted to a prioritizing process using 
SBDD techniques, including molecular docking and 
estimations of “TBE.” Afterward, the candidate compounds 
were subjected to in vitro testing against the Glo-I enzyme.

MATERIALS AND METHODS

Compound preparation
The chemicals selected for this study were sketched 

using ChemBioDraw Ultra® and subsequently loaded into 
discovery studio (DS). The corresponding standards were 
used to convert them into 3D structures. The minimize ligand 
protocol in DS was utilized to generate 3D structures using the 
default parameters.

Training set selection
We selected 12 chemicals as a training set for our 

investigation. Each compound within the active group has 
been assigned a principal value of 2, with a maximum omitted 
feature value of 0. Concurrently, the principal value of the 
inactive compounds was assigned as 0, while the maximum 
omitted feature value was set to 2. Subsequently, distinct 
files were generated for the active test set, inactive test set, and 
the compounds of the training set.

Ligand based pharmacophore generation
The common feature pharmacophore protocol 

was employed to construct pharmacophore models within this 
study. The protocol involved analyzing a series of ligands to 
uncover shared characteristics.

There are two approaches that can be used in DS to 
build 3D conformations: the on-the-fly method and the pre-
numerating method. The on-the-fly approach is used to produce 
conformations while moving through the pharmacophore 
modeling process. Alternatively, the pre-numerating approach 
involves creating many confirmations for each individual 
molecule beforehand and storing them in a database. This 
process is accomplished by generating a confirmation protocol. 
The conformers of the compounds of interest were created using 
the on-the-fly technique  in our work [32]. Furthermore, the 
option of “best conformer generation” was employed, with the 
maximum number of conformer generations per molecule set to 
the default value of 255. The energy threshold was modified to 
10 kcal/mol.

Validation of the generated pharmacophores
The validation of the generated pharmacophores was 

conducted to ensure that our model can accurately differentiate 
between active and inactive compounds, and to confirm its 
reliability in identifying potential hits with diverse chemical 
structures from the ASINEX® database [33]. 

The pharmacophore model built by the hip-hop-refine 
module of DS was evaluated using a test set of 56 chemicals for 
locating the active molecules. The activity was classified based 
on the IC50 value, with compounds having a value greater than 50 
µM being deemed inactive, while compounds with a value less 
than 50 µM were considered active. The test set was employed 
to validate the pharmacophore models and assess their capacity to 
differentiate between inactive drugs and active ones. The validation 
step was included in the common feature pharmacophore creation 
methodology. Our investigation utilized the pharmacophore model 
that yielded the most favorable validation findings.

The evaluation method was conducted by analyzing 
receiver operating characteristic (ROC) curves and computing 
the corresponding statistical descriptors, following the steps 
outlined below.

ROC curves analysis 
The ROC curves were employed as a validation 

approach to assess the pharmacophore’s capacity to differentiate 
between active and inactive compounds. The x-axis represents 
the false positive rate, which is calculated as 1 minus the 
specificity. On the other hand, the y-axis represents the true 
positive rate, also known as sensitivity. The ROC area is a 
numerical metric that quantifies the predictive capabilities of a 
model. It ranges from 0.5, indicating random prediction, to 1.0, 
indicating outstanding prediction [34].

We created ROC curves for the models utilizing 
internal validation of the common feature pharmacophore-
generating procedure. The created pharmacophore models 
were analyzed using the ROC curve to show their sensitivity 
and specificity. Equation 1 defines sensitivity as the ability of 
the model to accurately detect active chemicals in the test set 
and differentiate them from inactive compounds. Specificity, 
as defined by Equation 2, measures the model’s accuracy in 
correctly identifying inactive chemicals in the test set.

	               TP
Sensitivity =   
	          TP + FN

� (1)

Sensitivity of ROC curve analysis, TP refers to the 
number of true positive compounds, whereas FN refers to the 
number of false negative compounds.

 
	               TN
Specificity  =   
	          TN + FP

� (2)

Specificity of ROC curve analysis, TN refers to the 
number of true negative compounds, whereas FP refers to the 
number of false positive compounds.

Calculation of statistical descriptors
 The Güner-Henry (GH) evaluation method was 

successfully utilized on a dataset that included both active 
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and inactive compounds. The efficacy of this scoring method 
has been demonstrated in assessing diverse facets, including 
model selectivity (determining the optimal model), accuracy in 
detecting active compounds, and retrieval of active compounds. 
Furthermore, the GH scoring approach has demonstrated 
encouraging outcomes in the field of database mining, aiding in 
the measurement of model selectivity and the extent of coverage 
in the activity space. The GH analysis consisted of computing 
several parameters, as demonstrated in (3a) the percentage 
of active compounds (%A), which indicates the extent of the 
model’s activity space coverage, (3b) the percentage yield (%Y), 
which quantifies the model’s selectivity, (3c) the enrichment 
factor (E), and (d) the GH scores (Eq. 3). 

             Ha
%A  = 
           A*100

               Ha
%Y  = 
           Ht*100

        Ha*D
E  = 
        Ht*A

           Ha +(3A+Ht)
GH  = 
               4(Ht+A)

 * 
(1–Ht–Ha)
 
     D–A

� (3)

Equation (3a) %A: the percentage of active compounds, 
(3b) %Y: the percentage yield, (3c) E: the enrichment factor, 
and (d) the GH scores. 

The values of these variables were derived from 
the data obtained from the drug database, including the total 
number of compounds (D), the number of active compounds 
(A), the number of correctly retrieved active compounds by 
the model (Ha), and the total number of compounds retrieved 
by the model as hits (Ht). A GH score ranging from 0.7 to 0.8 
indicates a highly effective model [35,36].

Selection of the final pharmacophore
After evaluating the validation results using the quality 

of ROC curve values and GH score analysis, the top three 
pharmacophores were selected for searching the 3D database.

Virtual screening process
The 3D pharmacophores that were created were utilized 

to retrieve hits from the ASINEX® database. The process began 
by constructing a 3D database, utilizing predetermined parameters. 
We set the confirmation parameter to the “best” option to generate 
the confirmation. The compounds have been converted into their 
corresponding 3D conformations using the “build 3D database” 
technique. The chosen pharmacophores underwent screening 
using the Search 3D database technique to find possible inhibitors 
of Glo-I. The best align method parameter was used, while the 
other parameters remained in their default state.

Filtration of the retrieved hits
The obtained results were subjected to filtration 

based on many criteria, such as Lipinski’s rule of five and 

Veber’s rule for drug-like properties, utilizing the filtration 
protocols developed by Lipinski and Veber. Subsequently, the 
hits that satisfied all three pharmacophores were chosen, and 
any duplicates originating from distinct pharmacophores were 
removed.

Compounds preparation 
Before initiating the docking procedure, the final 

group of refined hits underwent preparation using the “Prepare 
Ligand” protocol. The preparation process utilized the default 
parameters, with the exception of the tautomer enumeration, 
which was explicitly configured to utilize the canonical 
tautomer. 

CDOCKER docking protocol 
The CDOCKER algorithm, which is based on the 

CHARMM forcefield, is a molecular docking technique that uses 
a grid-based approach. The CDOCKER algorithm generated 
multiple binding conformations for each molecule. For each 
of the 10 poses of each ligand, two energies were computed: 
the CDOCKER energy, which accounts for both the interaction 
energy between the protein and ligand, as well as the internal 
strain energy of the ligand. Furthermore, the CDOCKER 
interaction energy quantifies the energy linked to nonbonded 
interactions between the protein and the ligand. The parameters 
were maintained in their default configuration. Subsequently, 
10 poses were constructed for every ligand, and the related 
energies were computed for each pose. To verify the reliability 
of the docking methodology being used, it is recommended 
to first perform this process with a ligand-enzyme complex 
(provided one is available). This will allow for the assessment 
of the algorithm’s ability to accurately identify the binding site. 
This step is performed by first extracting the ligands and then 
redocking them into the active site (5ZO and HPJ). 

Calculation of the binding energy 
Before estimating the binding energy, we employed the 

“in situ ligand minimization” parameter, which we subsequently 
converted into the adopted basis Newton Raphson (NR) 
technique with default steps. The ligand-receptor binding free 
energies are calculated using the “calculate binding energies” 
parameters in DS. The default settings are used, with some 
specific changes made for the ligand conformation and solvent 
model. The ligand conformation parameter is set to “true” and 
the solvent model is changed to the implicit solvent model, 
specifically Poisson Boltzmann with the nonpolar surface area 
(PBSA) and the “Best” setting for the ligand conformational 
parameters [37]. Moreover, this parameter  facilitates the 
calculation of the mean binding energy for a set of related 
positions, taking into account the loss in conformational entropy 
and the energy of the bounded ligand [38]. The calculation of 
the binding energy is carried out using the following equation 
(Eq. 4).

�Energy Binding = Energy Complex –  
(Energy Ligand + Energy Receptor)� (4)

Equation for the computation of the binding energy.
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sodium phosphate monobasic solution, resulting in a pH range 
of 7.0 to 7.2. The test compounds were dissolved in DMSO 
to form a stock solution with a concentration of 10 mM. The 
absorbance of the solution was then measured at a wavelength 
of 240 nm for a duration of 200 seconds at a temperature of 
25°C.

The inhibitory effect of the chosen hits against Glo-I 
was assessed in vitro using rhGlo-I (recombinant human Glo-I) 
at positions [39]. To carry out this evaluation, three distinct 
experiments were conducted in triplicate for each chosen 
sample utilizing a plate reader, and the mean of these outcomes 
was computed. The IC50 values of all chosen hits were computed 
using GraphPad Prism 8 Figure 4.

 

               A30seconds.sampleSlope  = 
              A30seconds.Enzyme

� (5)

Slope of kinetic mode.

Biological evaluation of the selected compounds 
To evaluate the ability of the selected compounds to 

inhibit human Glo-I, we performed an in vitro Glo-I experiment 
utilizing human recombinant Glo-I (rhGlo-I) [39]. The Glo-I 
assay utilizes a spectrophotometric technique to measure the 
increase in absorbance at 240 nm, which serves as an indicator 
of the synthesis of S-D-lactoylglutathione.

The inhibitory effects of the selected compounds were 
determined by assessing their biological activities using an 
in vitro test on rhGlo-I, following the manufacturer’s protocol 
(R&D Systems, Inc., Minneapolis, MN). The rhGlo-I enzyme 
was reconstituted by dissolving it in sterile and deionized water 
to achieve a concentration of 0.5 mg/mL. The reconstituted 
enzyme was then stored at a temperature of −70 °C and 
thawed on the day of the test. The chemicals were dissolved 
in dimethyl sulfoxide (DMSO) to create a stock solution with 
a concentration of 10 mM. The test buffer was prepared by 
mixing a 0.1 M sodium phosphate dibasic solution with a 0.1 M 

Figure 4. Summarized steps of project methodology.

Note: A “training set” typically consists of a selection of compounds that are previously known to have activity against the target. This set includes compounds with a wide 
range of activity levels, ranging from very active to inactive. The purpose of the training set is to guide the software in constructing a sequence of pharmacophores. The “test set” 
refers to a bigger collection of compounds that have already been identified as having a certain activity. We utilized this set to evaluate the effectiveness of the pharmacophore 
developed from the training set in differentiating these compounds as either active or inactive. If the prediction was accurate, we would consider the created pharmacophores 
for future experimentation. These pharmacophores will be utilized to identify possible inhibitors from commercial databases by extracting unknown chemicals.
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                        At–AO% Activity  =   * 100.
                        Et–EO

� (6)

Percentage of activity.
                                 At–AO% Inhibition  = 1 –   * 100.
                                Et–EO

� (7)

Percentage of inhibition.

RESULTS AND DISCUSSION

Glo-I enzyme inhibitors compilation 
In this work, previously known Glo-I enzyme inhibitors 

with varying activity profiles were retrieved from the literature. 
This procedure yielded 59 active compounds, with an activity 
threshold of 50 µM. The biological assay used to determine the 
activities was identical in the majority of cases, indicating the 
accuracy of the pharmacophore model that will be later built. 
The activity ranged from 0.011 to 50 µM with various chemical 
scaffolds. To generate a common pharmacophore, nine decoys 
with activity greater than 50 µM were selected from literature 
and in-house nonactive compounds. 

ChemDraw® 12.0 was used to sketch the obtained 
compounds from the literature, and the structures were 
confirmed by a third party. The 3D coordinates of the 
compounds were obtained by transferring them to DS 2022, 
which was subsequently prepared  and minimized using 
the default parameters while eliminating isomerization and 
tautomerization steps. This approach yielded the same amount 
of chemicals, which will subsequently be categorized. The 59 
compounds were allocated to be active within the DS by adding 
two columns: “Principal” and “MaxOmitFeat,” with “Principal” 
set to 2 and “MaxOmitFeat” set to 0. 

In contrast, the inactive compounds were assigned a 
value of 0 for “Principal” and 2 for “MaxOmitFeat.” The next 
stage was to unravel the features that will be employed in the 
pharmacophore generation step using the “feature mapping” 
procedure. This stage yielded five features: “zinc binder, 
negative ionizable, H-bond donor, H-bond acceptor, ring 
aromatics, and hydrophobic.”

Common feature pharmacophore generation
This stage involves selecting a training set in which 

the common feature pharmacophore is utilized to generate 
a sequence of pharmacophores with varying features. The 
training set (see Table 1) was chosen to include 12 compounds, 
with 10 active and two inactive. The compounds were chosen 
based on their broad activity range and structural dissimilarity, 
with the remaining compounds serving as the test set. 

The next step was to run “common feature 
pharmacophore generation.” The settings utilized in this technique 
were tailored to our specific needs. The energy threshold was set 
to 10 kcal/mol, which is known to provide a realistic structure 
during the pharmacophore generation process. The minimum 
inter-feature distance of 2Å yielded the best results based on the 
ROC curve. The fitting method was specified to be flexible, with 
“true” for the validation phase. This will verify the legitimacy of 
the obtained pharmacophores. The minimum number of features 

Table 1. The training set in our study, MOF: MaxOmitFeat.
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has been set to four, with a maximum of five features. The number 
of leads that may be missed was set to one because it produced 
the best ROC results. 

This procedure yielded 10 pharmacophores (Table 
2). Three pharmacophores were chosen for the screening 
process, and the results were validated (Table 3). These 
pharmacophores were chosen based on ROC curve analysis 
and were classified as “good” with values ranging from 0.80 
to 0.90, while the remaining pharmacophores were classified 
as “fair.” Pharmacophore 1 has a ROC curve value of 0.83 and 
has produced two HBAs, one HBD, and one ring aromatic. 
Pharmacophore 2 has a ROC value of 0.82 and shares the same 
properties as pharmacophore 1. Pharmacophore 4 had an ROC 
of 0.83, and the same features were exhibited (Fig. 5).

Because this enzyme has a zinc feature in its active site 
that serves both structurally and catalytically, we began a process 
of manually replacing one of the features with a “zinc binder.” This 
technique was carried out by mapping the co-crystalized azaindole 
hydroxypyridone compound onto the resulting pharmacophores 
and replacing the hydroxamic acid mapped feature with zinc 
binder. One of the hydrogen bond acceptors (HBAs) was 
substituted (Fig. 6), and the process was repeated for the remaining 
three pharmacophores. This method was critical for our research 
because the major goal was to discover zinc-binding groups rather 
than HBA. Once completed, the pharmacophore will only detect 
the zinc-binding functional group in the search database. 

Gunner–Henry score method 
The pharmacophore model was further validated using 

the well-known Gunner–Henry score (GH). This procedure is 
used to assess the model selection precision of pharmacophore 
hits and to distinguish between actives and inactives. When 
the GH score is one, the goodness of hits is optimal, whereas 
a zero indicates poor outcomes. The GH value for the first 
pharmacophore was 0.92, the second pharmacophore was 0.91, 
and pharmacophore 4 had the highest value of 0.93. These 
findings have bolstered our efforts and lent credence to our work. 
Normally, a value of 0.7–0.8 suggests a solid correlation model.

Database search
The Asinex® Commercial Database of about half a 

million compounds was searched to find matches that meet 
the three pharmacophore models. This method began with the 

Table 2. The value of the top 10 pharmacophores hypothesis obtained from HipHopRefine algorithm of our study.

Phar. Features Rank Direct hit Partial hit Max fit

01 RDAA 130.648 111111111111 000000000000 4

02 RDAA 130.550 111111111111 000000000000 4

03 RDAA 129.505 111111111111 000000000000 4

04 RDAA 129.505 111111111111 000000000000 4

05 RAAA 128.555 111111111111 000000000000 4

06 RAAA 128.555 111111111111 000000000000 4

07 RAAA 128.555 111111111111 000000000000 4

08 RAAA 128.195 111111111111 000000000000 4

09 RAAA 128.195 111111111111 000000000000 4

Table 3. The validation results of our study.

Pharm. Sensitivity Specificity ROC curve

Pharm. 1 0.69492 0.88889 0.831

Pharm. 2 0.67797 0.88889 0.821

Pharm. 3 0.71186 0.77778 0.803

Pharm. 4 0.71186 0.88889 0.832

Pharm. 5 0.77966 0.55556s 0.771

Pharm. 6 0.77966 0.55556 0.784

Pharm. 7 0.77966 0.66667 0.797

Pharm. 8 0.79661 0.55556 0.795

Pharm. 9 0.77966 0.77778 0.820

Pharm. 10 0.79661 0.77778 0.827

database being prepared ahead of time to simplify the extraction 
process. The database was created using the “build 3D database” 
protocol in DS®, which generated and saved the 3D coordinates 
and conformers for later usage. The first pharmacophore yielded 
2,070 hits, the second 2,315, and the third 2,790. The hits that 
are common on the three pharmacophores were picked for the 
next filtering phase utilizing stringent hit compound selection 
and minimization without personal prejudice. To increase the 
validity of our compounds and ensure that these hits have 
advantageous orally absorbable properties, a filtration step using 
Lipinski’s rule of five and Veber’s rule was performed. These 
steps yielded 368 hits that demonstrated all pharmacophore 
mapping.

Docking and total binding energy (TBE) study
The 368 hits obtained were further filtered by 

subjecting these compounds to a docking study utilizing the DS 
CDOCKER protocol. The hits were generated using the “prepare 
ligands” technique, which prevented any isomerization while 
permitting rule-based ionization and canonical tautomerization, 
yielding 522 molecules for the docking stage. The docking 
procedure was performed on two Glo-I Protein Data Bank 
(PDB) entries: 3VW9 and 7WT2. Our study group had already 
prepared, solved, and reduced these two enzymes. The results 
of this stage were further used to do “in-situ” minimization and 
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calculate the “TBE.” This approach will help us as researchers 
select the final molecules with biological activity.

Final selection process
The selection criteria were a combination of 

experimental data and specific conditions relating to our prior 
knowledge of active site shape. The first selection stage was 
based on “CDOCKER interaction energy” and TBE for the 
two enzymes with the best results (no positive TBE and low 
CDOCKER). This stage reduced the number of compounds 
selected for visual evaluation from 368 to 59. The final selection 
process was carried out using the available in silico results, 
with significant assistance from the researchers as experienced 
experts in this enzyme. The interference procedure was 
necessary at this stage to prevent black box behavior, in which 

Figure 6. The modified analogues of the pharmacophore feature (a) 
pharmacophore-1, (b) pharmacophore-2, (c) pharmacophore-4. The 
modifications were carried out by changing the HBAs (on the left) into zinc-
binding feature (on the right, magenta sphere). The green color represents HBA, 
the brown color represents ring aromatic, and the purple color represents HBD. 
The grey color represents the exclusion sphere. 

what the computer generated is taken for granted. It is generally 
understood that the input to in silico work is determined by the 
quality of the structures placed or available. As a result, the 
researchers’ experience could aid in mitigating prejudice that 
may arise during in silico study. A total of 15 compounds were 
chosen from the 59 compounds (Table 4). These compounds 
are distinguished by their ability to hold a variety of chemical 
scaffolds with different 3D geometry. 

Investigating the structures of the selected compounds 
reveals that they all contain a carboxylic acid group, which 
may indicate the importance of this group in chelating the zinc 
atom at the active site. In most cases, this carboxylic acid is 
immediately linked to the aromatic ring, which is required 
to fill the hydrophobic region adjacent to the zinc atom at 
the active site. This hydrophobic pocket can hold up to two 
aromatic rings. The presence of carboxylic acid can also be 
attributed to the existence of a crucial property of the active 
site, namely the very positive entry. In most docking situations, 
the carboxylic acid has been directed away from being a zinc 
binder and toward ionic interactions in this area. As a result, the 
zinc-binding moieties in these compounds could be converted 
into alternative zinc binder functions such as ketone, thione, 
amide, sulfide, and thiazolidinedione (negatively ionized). 
The selected chemicals were purchased and tested in vitro 
except for two compounds that were unavailable. It should 
be noted that the flexibility of the molecules was considered 
when selecting the potential compounds. The majority of 
the compounds were chosen to be semi-rigid with three-ring 
configurations.

In-vitro biological assay
The inhibitory activity of the selected hits against 

rhGlo-I was determined in vitro using rhGlo-I [21]. Three 
successive tests were performed in triplicate on each of the 
selected hits using a plate reader, and the average of these 
results was calculated. GraphPad Prism 8 was used to calculate 
the IC50 values for all selected hits. The data are presented as a 
percentage of inhibition. This test was performed in-house in 
accordance with the R&D company’s procedures. Myricetin 
(3.06 µM) was employed as a positive control on customized 
UV-compatible plates. The wavelength of measurement was set 

Figure 5. ROC curves resulted from the generated pharmacophore models.
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Table 4. The selected 15 compounds for characterization. The blue-colored moiety is related to the zinc-binding group. The first four active 
compounds in addition to Myricetin are shown in Figure 7. TBE: TBE, CIE: CDOCKER interaction energy, %inh.: percentage of inhibition, ND: 

not determined, NT: not tested, FV-PH: Fit value of pharmacophore 1, 2, and 4.

Name Chemical structure TBE CIE (-) %inh. IC50 (µM) FV-PH1 FV-PH2 FV-PH4

BAS 00323528

NH

S O

O

O

O-
O

HO

 

−28.158 43.464 101.749 2.79 3.21802 3.0876 2.94557

BAS 02067456
H
N

O

O

O
-

OH

N
S

O
S

S −19.215 54.723 82.636 20.25 1.78 2.085 2.32962

BAS 01854346

N

S
S

N

N
O

-

O

O

H

−53.300 46.646 73.276 26.20 1.795 1.29676 1.84483

BAS 00502741

H
N

O

O
-
O

N

S

O

S

O −63.391 50.126 65.206 35.92 2.388 1.99 1.78

BAS 01169943
H
N

O

S
O

N
HO

H
N

O

O
-
O −43.631 55.693 32.4810 ND 0.323 0.021 1.54828

BAS 09617506
S

OH

HN
S
O

O
O

N NH

N
−26.123 42.969 31.9689 ND 0.898 1.58481 1.74103

BAS 04375850
O N

H
S
O

O

N
N SH

−31.378 41.463 23.4181 ND 2.518 2.62316 1.26644

BAS 12711371 HO
-
O

O
N
H

S

O

N

NS
S

−22.838 41.756 16.4189 ND 2.33441 1.897 1.17146

BAS 00435339
O

N
H

F

N
H

S
S

O

O H
N N

N

O

O −23.701 43.773 15.9165 ND 1.72 1.34716 2.53584

ASN 16984295

N N

N SHNHO

−31.599 34.16 10.2447 ND 1.435 2.66453 2.2663

BDG 34132759

O OH

ON
H+

O

N
H

O
-

O

−32.782 43.180 3.3844 ND 2.40229 2.447 1.29945

(Continued)
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to 240 nm, which is in the ultraviolet range. This method was 
performed three times to guarantee the test’s correctness, and a 
third party tested them to prevent any personal errors. Four of 
the 13 compounds demonstrated activity of less than 50 µM, 
with the highest activity at 2.79 µM. (Fig. 7) depicts the IC50 
curves.

Active compounds analysis
BAS00323528, the most active chemical, inhibits 

Glo-I enzyme at a concentration of 2.79 µM in vitro. This 
molecule is composed of three primary structural blocks: the 
war head zinc binder thiazolidinedione ring, which is expected 
to have a negative charge at physiological pH. This negative 
charge will establish a coordination bond with a zinc atom at 
the active site. Because of the role of zinc atoms in enzyme 
mechanisms, this bond is regarded as the most important 
feature in reflecting the compound’s activity. Furthermore, 

this ring has a hydrophobic carbon skeleton along with a sulfur 
atom, which will generate hydrophobic interactions with the 
hydrophobic pocket next to the zinc atom. The salicylic acid 
moiety on the opposite side of this structure, which is likewise 
expected to have a negative charge (Fig. 8), was in charge 
of generating ionic connections with the positively ionized 
active site entrance. Lys156 is the primary basic amino acid 
responsible for binding to salicylic acid. The third structural 
element is the middle furan ring, which forms hydrophobic 
contacts with Met 65 and Met 157.

BAS02067456 was the second most active chemical, 
with an IC50 of 20.25 µM. This chemical contains a potential zinc 
chelating ring, 2-thioxothiazolidin-4-one, which is responsible 
for zinc chelation and hydrophobic interactions (Fig. 9). The 
ketone activity chelates the zinc atom, whilst the thione moiety 
engages in hydrophobic interactions. The adjacent hydrophobic 
pocket was optimally filled by a thiophene ring, which interacts 
hydrophobically with a variety of amino acids including Leu92, 
Cys60, Met183, and Met179. The salicylic acid moiety in the 
prior molecule likewise has similar ionic interactions with the 
active site entryway, particularly with Arg37.

BAS01854346 was the third most active chemical, with 
an IC50 of 26.2 µM. The zinc-binding moiety was a benzothiazole 
ring in which the sp2 hybridized nitrogen atom chelates the zinc 
atom, similar to the imidazole ring found in His amino acids. 
Furthermore, the sulfur atom in this ring structure is important 
for hydrophobic interactions. The benzonitrile functionality 
accommodates the hydrophobic moiety in a unique way, with the 
nitrile responsible for H-bonding with Cys60 and the aromatic 
ring performing hydrophobic interactions with Met179, Met157, 
and Phe62. The benzoic acid functional group may be capping the 
active site moiety through ionic interactions with Arg37 (Fig. 10). 

Name Chemical structure TBE CIE (-) %inh. IC50 (µM) FV-PH1 FV-PH2 FV-PH4

BAS 00084650 O
-
O S

O

O

H
N

N
H

O

N+
O

-
O

−28.671 55.431 ND ND 2.963 2.81683 2.84292

ASN 06976787 S

NH2O

NN
SN

−30.629 33.604 ND ND 3.87 3.722 3.32735

BAS 00330647

N

H
N

N

O

O
O

-

OH
−31.005 46.514 NT NT 0.89 1.5336 2.46077

BAS 00084661

O

H
N

S
O

O

O
N
H -

O O

−25.232 52.431 NT NT 2.40579 2.52952 1.87876

Myricetin

OH
OOH

HO O
OH

OH
OH 3.5

Figure 7. Dose-response curves for the compounds (BAS02067456, 
BAS0050741, BAS00323528, BAS01854346, and Myricetin).
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BAS00502741 was the next most active, having 
an IC50 of 35.29 µM. This chemical was discovered to be 
strikingly similar to BAS02067456. As expected, an identical 
binding pattern was seen when the 2-thioxothiazolidin-4-one 
performed zinc chelation, with the sulfide structure responsible 
for the chelation process. The methoxy bioisostere of the 

thiophene ring of this molecule occupied the hydrophobic 
pocket and interacted with Leu182, Met183, Ile88, and 
Cys90. The negatively ionized salicylic acid functionality 

Figure 8. (1) 3D model of docking of the compound (BAS00323528) in the 
active site of Glo-I enzyme. The hydrophobic surface was used to depict the 
binding area. (2) 2D model represents the interaction between the compound 
(BAS00323528) and the active site of the enzyme. (3) Elucidation of 
(BAS00323528) compound in stick pattern mapped to Pharmacophore-1. Figure 9. (1) 3D model of docking of the compound (BAS02067456) in the 

active site of Glo-I enzyme. The hydrophobic surface was used to depict the 
binding area. (2) 2D model represent the interaction between the compound 
(BAS02067456) and the active site of the enzyme. (3) Elucidation of 
(BAS02067456) compound in stick pattern mapped to Pharmacophore-1.
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several typical explanations for the lack of activity, including 
the absence of an effective ROC pharmacophore, which will 
be reflected in the quality of compound selection. Furthermore, 
during the structure-based evaluation step, the available protein 
structures are expected to be less optimum due to a variety of 
factors such as crystallization quality and resolution, as well as 
the type of bound ligand. 

demonstrated an ionic interaction with Lys156 at the active 
site entrance. Interestingly, when docked inside the active 
site, this molecule takes on a different orientation, with the 
salicylic acid exhibiting zinc chelation capabilities because 
the negative ion on the carboxylic acid is linked with zinc. The 
methoxy ring had ion-dipole interactions with the positively 
charged entrance (Fig. 11).

Concerning the inactive compounds, their presence 
warrants investigation and a clear explanation for their lack 
of activity is useful in avoiding them in the future. There are 

Figure 11. (1) 3D diagram of (BAS00502741) in the active site of Glo-I 
enzyme. The hydrophobic surface was used to depict the binding area. (2) 2D 
model represents the interaction between the compound (BAS00502741) and 
the active site of the enzyme. (3) Elucidation of (BAS00502741) compound in 
stick pattern mapped to Pharmacophore-1.

Figure 10. (1) 3D model of docking of the compound (BAS01854346) in the 
active site of Glo-I enzyme. The hydrophobic surface was used to depict the 
binding area. (2) 2D model represents the interaction between the compound 
(BAS01854346) and the active site of the enzyme. (3) Elucidation of 
(BAS01854346) compound in stick pattern mapped to Pharmacophore-1.
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