Apoptosis, or programmed cell death, is a crucial mechanism in preventing cancer growth, and one of the targets is reducing the expression of the anti-apoptotic protein Bcl-2. This study aimed to evaluate the potential of fractions from nutsedge (Cyperus rotundus) essential oil in inducing apoptosis and inhibiting the progression of cervical cancer. The researchers investigated the apoptosis-inducing activity of these fractions against the HeLa cervical cancer cell line using in vitro and in silico approaches. The cytotoxic effects were assessed through an MTT assay on HeLa cells cultured in 96-well plates. Additionally, flow cytometry with Annexin/PI staining was employed to analyze the induction of apoptosis by the fractions. The immunocytochemical staining of cells was also implemented to assess Bax and Bcl-2 expressions. The biologically active compound in fractions was screened using a molecular docking approach to Bcl-2 co-crystalized structure and their pharmacokinetics and toxicity profile were assessed. The cytotoxic activity differed significantly from each fraction. The highest cytotoxicity was observed in fraction 1 (IC50: 8.307 + 0.186 mcg/ml), and the lowest cytotoxicity was observed in fraction 4 (IC50:>500 mcg/ml). Fraction 1 decreased the Bcl-2 expression and increased the Bax expression. Molecular docking screening revealed that 5-(7a-isopropenyl-4,5-dimethyl-octahydro-inden-4-yl)-3-methyl-pent-2-en-1-ol was predicted as the main contributor to apoptosis-inducing activity of fraction 1. The supplementation of fraction 1 induces cell apoptosis on HeLa cells, indicating the potential of this fraction of nutsedge essential oil for developing an anti-cervical cancer agent.
Susianti S, Yanwirasti Y, Darwin E, Jamsari J, Setiawansyah A. Diterpene alcohol fraction of Cyperus rotundus Linn essential oil regulates Bcl-2 and Bax expression inducing apoptosis on HeLa in vitro and in silico. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.188231
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660 | |
2. Singh N, Kumar A. Insights into Ovarian Cancer: chemo-diversity, dose depended toxicities and survival responses. Med Oncol. 2023;40(4):111. Available from: https://doi.org/10.1007/s12032-023-01976-0 | |
3. Jasrotia R, Dhanjal DS, Bhardwaj S, Sharma P, Chopra C, Singh R, et al. Nanotechnology based vaccines: cervical cancer management and perspectives. J Drug Deliv Sci Technol. 2022;71:103351.Available from: https://www.sciencedirect.com/science/article/pii/S1773224722002611 https://doi.org/10.1016/j.jddst.2022.103351 | |
4. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020 Mar 27;83(3):770-803. Available from: https://doi.org/10.1021/acs.jnatprod.9b01285 | |
5. Farnsworth NR. Screening plants for new medicine. In: Staff S, Wilson E, editors. Biodiversity. Washington, DC: National Academy of Sciences Press; 1988. p. 83-97. | |
6. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1):72-9. https://doi.org/10.1016/j.jep.2005.05.011 | |
7. Kamala A, Middha SK, Karigar CS. Plants in traditional medicine with special reference to Cyperus rotundus L.: a eeview. 3 Biotech. 2018;8(3):309. https://doi.org/10.1007/s13205-018-1328-6 | |
8. Essaidi I, Koubaier HBH, Snoussi A, Casabianca H, Chaabouni MM, Bouzouita N. Chemical composition of Cyperus rotundus L. tubers essential oil from the South of Tunisia, antioxidant potentiality and antibacterial activity against foodborne pathogens. J Essent Oil-Bearing Plants. 2014;17(3):522-32. https://doi.org/10.1080/0972060X.2014.895182 | |
9. Rajamanickam M, Rajamanickam A. Analgesic and anti-inflammatory activity of the extracts from Cyperus rotundus Linn Rhizomes. J Appl Pharm Sci. 2016;6(9):197-203. https://doi.org/10.7324/JAPS.2016.60929 | |
10. Singh N, Pandey BR, Verma P, Bhalla M, Gilca M. Phyto-pharmacotherapeutics of Cyperus rotundus Linn. (Motha): an overview. Indian J Nat Prod Resour. 2012;3(4):467-76. | |
11. Sivapalan SR. Medicinal uses and pharmacological activities of Cyperus rotundus Linn-a review. Int J Sci Res Public. 2013;3(1):2250-3153. | |
12. Susianti S, Yanwirasti Y, Darwin E, Jamsari. The cytotoxic effects of purpel nutsedge (Cyperus rotundus L.) tuber essential oil on the hela cervical cancer cell line. Paksitan J Biotech. 2016;15(2):1-23. | |
13. Utami N, Susianti S, Bakri S, Kurniawan B, Setiawansyah A. Cytotoxic activity of Cyperus rotundus L. Rhizome collected from three ecological zones in Lampung-Indonesia Against HeLa Cervical Cancer Cell. J Appl Pharm Sci. 2023;13(10):141-8. 14. Simorangkir D, Masfria M, Harahap U, Satria D. Activity anticancer N-hexane fraction of Cyperus rotundus L. Rhizome to breast cancer MCF-7 cell l;ine. Open Access Maced J Med Sci. 2019;7(22):3904-6. https://doi.org/10.3889/oamjms.2019.530 | |
15. Mannarreddy P, Denis M, Munireddy D, Pandurangan R, Thangavelu KP, Venkatesan K. Cytotoxic effect of Cyperus rotundus Rhizome extract on human cancer cell lines. Biomed Pharmacother. 2017;95:1375-87. https://doi.org/10.1016/j.biopha.2017.09.051 | |
16. Memariani T, Hosseini T, Kamali H, Mohammadi A, Ghorbani M, Shakeri A, et al. Evaluation of the cytotoxic effects of Cyperus longus extract, fractions and its essential oil on the PC3 and MCF7 cancer cell lines. Oncol Lett. 2016;11(2):1353-60. https://doi.org/10.3892/ol.2015.4050 | |
17. Hu QP, Cao XM, Hao DL, Zhang LL. Chemical composition, antioxidant, DNA damage protective, cytotoxic and antibacterial activities of Cyperus rotundus Rhizomes essential oil against foodborne pathogens. Sci Rep. 2017;7(December 2016):1-9. https://doi.org/10.1038/srep45231 | |
18. Wang Q, Yi C, Duan W, Duan Y, Lou J, Zeng G, et al. Two new sesquiterpenoids isolated from Cyperus rotundus L. Nat Prod Commun. 2021;16(2):1934578X2199168. https://doi.org/10.1177/1934578X21991687 | |
19. Jeong SJ, Miyamoto T, Inagaki M, Kim YC, Higuchi R. Rotundines A−C, Three novel Sesquiterpene Alkaloids from Cyperus rotundus. J Nat Prod. 2000;63(5):673-5. https://doi.org/10.1021/np990588r | |
20. Samariya K, Sarin R. Isolation and identification of flavonoids from Cyperus rotundus Linn. in vivo and in vitro. J Drug Deliv Therap. 2013;3(2):109-13. https://doi.org/10.22270/jddt.v3i2.460 | |
21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4 | |
22. Touré BB, Miller-Moslin K, Yusuff N, Perez L, Doré M, Joud C, et al. The role of the acidity of N-Heteroaryl sulfonamides as inhibitors of Bcl-2 family protein-protein interactions. ACS Med Chem Lett. 2013;4(2):186-90. https://doi.org/10.1021/ml300321d | |
23. Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic properties using graph-based signatures (Theory-How to Enterpret pkCSM Result). pKCSM. 2015;58(9):4066-72. Available from: http://biosig.unimelb.edu.au/pkcsm/theory https://doi.org/10.1021/acs.jmedchem.5b00104 | |
24. Setiawansyah A, Arsul MI, Sukrasno S, Damayanti S, Insanu M, Fidrianny I. Anti-hyperuricemic potential of caryophyllene from Syzygium aromaticum essential oil: SiO2-AgNO3-based column chromatography purification, antioxidant, and Xanthine Oxidase inhibitory activities. Adv Trad Med. 2024;24:475-87. https://doi.org/10.1007/s13596-023-00710-5 | |
25. Sayed HM, Mohamed MH, Farag SF, Mohamed GA, Proksch P. A new steroid glycoside and furochromones from Cyperus rotundus L. Nat Prod Res. 2007 Apr;21(4):343-50. https://doi.org/10.1080/14786410701193056 | |
26. Kilani S, Ledauphin J, Bouhlel I, Ben Sghaier M, Boubaker J, Skandrani I, et al. Comparative study of Cyperus rotundus essential oil by a modified GC/MS analysis method. Evaluation of its antioxidant, cytotoxic, and apoptotic effects. Chem Biodivers. 2008;5(5):729-42. https://doi.org/10.1002/cbdv.200890069 | |
27. Susianti S. Selektivitas Ekstrak Umbi Rumput Teki (Cyperus rotundus L.) Terhadap Sel HeLa dan SiHa Serta Pengaruhnya Terhadap Apoptosis. Yogyakarta, Indonesia: Universitas Gadjah Mada; 2009. | |
28. Gautam N, Mantha AK, Mittal S. Essential oils and their constituents as anticancer agents: a mechanistic view. BioMed Res Int. 2014;24:154106-29. https://doi.org/10.1155/2014/154106 | |
29. Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. Exploring the potent anticancer activity of essential oils and their bioactive compounds: mechanisms and prospects for future cancer therapy. Pharmaceuticals. 2023;16(8):1086-112. https://doi.org/10.3390/ph16081086 | |
30. Huang SY, Grinter SZ, Zou X. Scoring functions and their evaluation methods for protein-ligand docking recent advances and future directions. Phys Chem Chem Phys. 2010;12(40):12899-908. https://doi.org/10.1039/c0cp00151a | |
31. Mukherjee S, Balius TE, Rizzo RC. Docking validation resources: protein family and ligand flexibility experiments. J Chem Inf Model. 2010;50(11):1986-2000. https://doi.org/10.1021/ci1001982 | |
32. Setiawansyah A, Reynaldi MA, Tjahjono DH, Sukrasno S. Molecular docking-based virtual screening of antidiabetic agents from Songga (Strychnos lucida R.Br.): an Indonesian Native Plant. Curr Res Biosci Biotech. 2022;3(2):208-14. https://doi.org/10.5614/crbb.2022.3.2/82KYTCPW | |
33. Reynaldi MA, Setiawansyah A. Potensi anti-Kanker Payudara Tanaman Songga (Strychnos lucida R. Br): Tinjauan Interaksi Molekuler Terhadap Reseptor Estrogen-α In Silico. Sasambo J Pharm. 2022;3(1):30-5. https://doi.org/10.29303/sjp.v3i1.149 | |
34. Setiawansyah A, Arsul MI, Adliani N, Wismayani L. HMG-CoA reductase inhibitory activity potential of Iota-, Kappa-, and Lambda-carrageenan: a molecular docking approach. Ad-Dawaa' J Pharm Sci. 2022;5(2):94-102. https://doi.org/10.24252/djps.v5i2.32721 | |
35. Pérez MAC, Sanz MB, Torres LR, Avalos RG, González MP, Díaz HG. A topological sub-structural approach for predicting human intestinal absorption of drugs. Eur J Med Chem. 2004;39(11):905-16. https://doi.org/10.1016/j.ejmech.2004.06.012 | |
36. Issa NT, Wathieu H, Ojo A, Byers SW, Dakshanamurthy S. Drug metabolism in preclinical drug development: a survey of the discovery process, toxicology, and computational tools. Curr Drug Metab. 2017;18(6):556-65. https://doi.org/10.2174/1389200218666170316093301 | |
37. Durán-Iturbide NA, Díaz-Eufracio BI, Medina-Franco JL. In Silico ADME/Tox profiling of natural products: a focus on BIOFACQUIM. ACS Omega. 2020;5(26):16076-84. https://doi.org/10.1021/acsomega.0c01581 | |
38. Doogue MP, Polasek TM. Drug dosing in renal disease. Clin Biochem Rev. 2011;32(2):69-73. | |
39. Paine SW, Ménochet K, Denton R, McGinnity DF, Riley RJ. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption. Drug Metab Dispos. 2011 Jun;39(6):1008-13. https://doi.org/10.1124/dmd.110.037267 | |
40. Hacker K, Maas R, Kornhuber J, Fromm MF, Zolk O. Substrate-dependent inhibition of the human organic cation transporter OCT2: a comparison of metformin with experimental substrates. PLoS One. 2015;10(9):e0136451. https://doi.org/10.1371/journal.pone.0136451 |
Year
Month