SNEDDS to improve the bioactivities of Pandanus tectorius leaves: Optimization, antioxidant, and anticancer activities via apoptosis induction in human cervical cancer cell line

Alifa Husnun Kholieqoh Murni Nur Islamiah Kassim Tengku Sifzizul Tengku Muhammad Khairul Anam Yeong Yik Sung Hermansyah Amir Husna Nugraha Praja Yosie Andriani   

Open Access   

Published:  Jul 24, 2024

DOI: 10.7324/JAPS.2024.168694
Abstract

Cancer continues to be a deadly disease on a global scale. Furthermore, despite the high expense of their development, synthetic chemotherapeutic drugs currently being used in clinical settings have failed to meet expectations during the past ten years. Therefore, new herbal medications might be alternative anticancer agents that are effective and affordable. Antioxidants in herbs might lessen oxidative stress and prevent carcinogenesis by slowing down and blocking the initiation of cancer cell development. Some researchers have reported that Pandanus tectorius has antioxidant activity. However, the antioxidant and anticancer properties of P. tectorius leave (PTL) in the form of self-nanoemulsifying drug delivery system (SNEDDS), specifically against human cervical cancer cells (HeLa) have not been studied. This study examined the anticancer activity of PTL-SNEDDS via induction of apoptosis on HeLa cells. All three PTL extracts (hexane, ethyl acetate, and methanol) were successfully formulated into SNEDDS formulation and showed improvement in antioxidant and anticancer activity compared to the crude extract. The cells’ morphological characteristics showed that PTL-SNEDDS-treated cells died from both early and late apoptosis. Thus, these findings introduce PTL-SNEDDS as an anticancer agent against human cervical cancer.


Keyword:     SNEDDS cervical cancer apoptosis coastal plant oral bioavailability


Citation:

Kholieqoh AH, Kassim MNI, Muhammad TST, Anam K, Sung YY, Amir H, Praja HN, Andriani Y. SNEDDS to improve the bioactivities of Pandanus tectorius leaves: Optimization, antioxidant, and anticancer activities via apoptosis induction in human cervical cancer cell line. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.168694

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Samad SA. Action plan towards the elimination of cervical cancer in Malaysia 2021–2030. 1st ed. Putrajaya, Malaysia: Family Health Development Division, Ministry of Health; 2021. pp 1–68.

2. WHO. WHO framework for strengthening and scaling-up services for the management of invasive cervical cancer. 1st ed. Geneva, Switzerland: World Health Organization; 2020. pp 1–114. Available from: https://www.who.int/publications/i/item/9789240003231

3. ACS. About cervical cancer. Cervical Cancer. 2017;2(5):1–9.

4. Balvan J, Krizova A, Gumulec J, Raudenska M, Sladek Z, Sedlackova M, et al. Multimodal holographic microscopy: distinction between apoptosis and oncosis. PLoS One. 2015;10(3):e0121674. http://doi.org/10.1371/journal.pone.0121674

5. Rock KL, Kono, H. The inflammatory response to cell death. Annu Rev Pathol Mech Dis. 2008;3:99–126. http://doi.org/10.1146/annurev.pathmechdis.3.121806.151456

6. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92. http://doi.org/10.1002/cbin.11137

7. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16(6):663–9. http://doi.org/10.1016/j.ceb.2004.09.011

8. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):1–14. http://doi.org/10.1186/1756-9966-30-87

9. ACS. Treating cervical cancer. 2021. pp 1–35. Available from: https://www.cancer.org/content/dam/CRC/PDF/Public/8602.00.pdf

10. Basilotta R, Mannino D, Filippone A, Casili G, Prestifilippo A, Colarossi L, et al. Role of calixarene in chemotherapy delivery strategies. Molecules. 2021;26(13):3963. http://doi.org/10.3390/molecules26133963

11. Muravev A, Voloshina A, Sapunova A, Gabdrakhmanova F, Lenina O, Petrov K, et al. Calix[4]arene–pyrazole conjugates as potential cancer therapeutics. Bioorg Chem. 2023;139:106742. http://doi.org/10.1016/j.bioorg.2023.106742

12. Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, et al. Anticancer plants: a review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules. 2020;10(1):47. http://doi.org/10.3390/biom10010047

13. Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mole Sci. 2018;19(11):3533. http://doi.org/10.3390/ijms19113533

14. Saladin K. Anatomy and physiology: the unity of form and function. New York, NY: McGraw-Hill; 2009. Vol. 53, pp 9.

15. Andriani Y, Ramli NM, Syamsumir DF, Kassim MNI, Jaafar J, Aziz NA, et al. Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. Arab J Chem. 2019;12(8):3555–64. http://doi.org/10.1016/j.arabjc.2015.11.003

16. Pangestika I, Oksal E, Tengku Muhammad TS, Amir H, Syamsumir DF, Wahid MEA, et al. Inhibitory effects of tangeretin and trans-ethyl caffeate on the HMG-CoA reductase activity: potential agents for reducing cholesterol levels. Saudi J Biol Sci. 2020;27(8):1947–60. http://doi.org/10.1016/j.sjbs.2020.06.010

17. Rahayu SE, Sinaga E, Herzagovina S, Jaelani MR. Phytochemical constituents, antioxidant, antibacterial and cytotoxicity properties of Pandanus tectorius. Syst Rev Pharm. 2019;10(1). http://doi.org/10.5530/srp.2019.1.45

18. Cheng C, Park SC, Giri SS. Effect of Pandanus tectorius extract as food additive on oxidative stress, immune status, and disease resistance in Cyprinus carpio. Fish Shellfish Immunol. 2022;120;287–94. http://doi.org/10.1016/j.fsi.2021.12.004

19. Omodamiro O, Ikekamma C. In vitro study of antioxidant and anticoagulant activities of ethanol extract of Pandanus tectorius leaves. Int Blood Res Rev. 2016;5(1):1–11. http://doi.org/10.9734/ibrr/2016/22231

20. Kholieqoh AH, Muhammad TST, Mohamad H, Choukaife H, Seyam S, Alfatama M, et al. Formulation and characterization of SNEDDS of Pandanus tectorius fruit extract and in vitro antioxidant activity. Orient J Chem. 2022;38(4):855–64. http://doi.org/10.13005/ojc/380404

21. Nugroho BH, Syifaudin MR, Fauzi LR, Anggraini E, Ritonga HO. Snedds (self-nanoemulsifying drug delivery system) formulation of sarang semut extract on cervical cancer cells (HeLa) with MTT assay method. J Phys Conf Ser. 2020;1445(1):1–6. http://doi.org/10.1088/1742-6596/1445/1/012020

22. Date AA, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine. 2010;5(10):1595–616.

23. Abd-Elhakeem E, Teaima MH, Abdelbary GA, El Mahrouk GM. Bioavailability enhanced clopidogrel-loaded solid SNEDDS: development and in-vitro/in-vivo characterization. J Drug Deliv Sci Technol. 2019;49:603–14. http://doi.org/10.1016/j.jddst.2018.12.027

24. Sakloetsakun D, Dünnhaupt S, Barthelmes J, Perera G, Bernkop-Schnürch A. Combining two technologies: Multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. Int J Biol Macromol. 2013;61:363–72. http://doi.org/10.1016/j.ijbiomac.2013.08.002

25. Wulandari E, Alverina A, Martien R. SNEDDS (self-nanoemulsifying drug delivery system) formulation of B-carotene in olive oil (Olea europaea). Int J Adv Res. 2016;4(11):1031–43. http://doi.org/10.21474/ijar01/2179

26. Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, et al. Capsaicin loaded Solid SNEDDS for enhanced bioavailability and anticancer activity: in-vitro, in-silico, and in-vivo characterization. J Pharm Sci. 2021;110(1):280–91. http://doi.org/10.1016/j.xphs.2020.10.020

27. Akhtartavan S, Karimi M, Karimian K, Azarpira N, Khatami M, Heli H. Evaluation of a self-nanoemulsifying docetaxel delivery system. Biomed Pharmacother. 2019;109:2427–33. http://doi.org/10.1016/j.biopha.2018.11.110

28. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181(4617):1199–200. http://doi.org/10.1038/1811199a0

29. Buya AB, Beloqui A, Memvanga PB, Préat V. Self-nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020;12(12):1–52. http://doi.org/10.3390/pharmaceutics12121194

30. Kommuru TR, Gurley B, Khan MA, Reddy IK. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 2001;212(2):233–46. http://doi.org/10.1016/S0378-5173(00)00614-1

31. Elnaggar YSR, El-Massik MA, Abdallah OY. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization. Int J Pharm. 2009;380(1–2):133-41. http://doi.org/10.1016/j.ijpharm.2009.07.015

32. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res Official J Am Assoc Pharm Sci. 1995;12(11):1561–72. http://doi.org/10.1023/A:1016268311867

33. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6): 625–37. http://doi.org/10.1016/j.addr.2007.10.010

34. Chen ML. Lipid excipients and delivery systems for pharmaceutical development: a regulatory perspective. Adv Drug Deliv Rev. 2008;60(6):768–77. http://doi.org/10.1016/j.addr.2007.09.010

35. Dash RN, Mohammed H, Humaira T, Ramesh D. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Saudi Pharm J. 2015;23(5):528–40. http://doi.org/10.1016/j.jsps.2015.01.024

36. Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443–8. http://doi.org/10.1016/j.jcis.2008.10.077

37. Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: design, optimization, in vitro and in vivo evaluation. J Mol Liq. 2016;218:219–32. http://doi.org/10.1016/j.molliq.2016.02.081

38. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–93. http://doi.org/10.1016/j.addr.2012.09.018

39. Beg S, Swain S, Singh HP, Patra CN, Rao MB. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech. 2012;13(4):1416–27. http://doi.org/10.1208/s12249-012-9865-5

40. Nasr A, Gardouh A, Ghorab M. Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics. 2016;8(3):20. http://doi.org/10.3390/pharmaceutics8030020

41. Suryani S, Zubaydah WOS, Sahumena MH, Adawia S, Wahyuni R, Adjeng ANT, et al. Preparation and characterization of self-nanoemulsifying drug delivery system (SNEDDS) from Moringa oleifera L. and Cassia alata L. leaves extracts. AIP Conf Proc. 2019;2199. http://doi.org/10.1063/1.5141325

42. Syukri Y, Martien R, Lukitaningsih E, Nugroho AE. Novel self-nano emulsifying drug delivery system (SNEDDS) of andrographolide isolated from Andrographis paniculata Nees: characterization, in-vitro and in-vivo assessment. J Drug Deliv Sci Technol. 2018;47(June):514–20. http://doi.org/10.1016/j.jddst.2018.06.014

43. Rahman MA, Iqbal Z, Hussain A. Formulation optimization and in vitro characterization of sertraline loaded self-nanoemulsifying drug delivery system (SNEDDS) for oral administration. J Pharm Investig. 2012;42(4):191–202. http://doi.org/10.1007/s40005-012-0029-0

44. Alwadei M, Kazi M, Alanazi FK. Novel oral dosage regimen based on self-nanoemulsifying drug delivery systems for codelivery of phytochemicals—Curcumin and thymoquinone. Saudi Pharm J. 2019;27(6):866–76. http://doi.org/10.1016/j.jsps.2019.05.008

45. Ali HH, Hussein AA. Oral solid self-nanoemulsifying drug delivery systems of candesartan citexetil: formulation, characterization and in vitro drug release studies. AAPS Open. 2017;3(1):1–17. http://doi.org/10.1186/s41120-017-0015-8

46. Xi J, Chang Q, Chan CK, MengZY, Wang GN, Sun JB, et al. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPS PharmSciTech. 2009;10(1):172–82. http://doi.org/10.1208/s12249-009-9190-9

47. Shakeel F, Haq N, Alanazi FK, Alsarra IA. Polymeric solid self-nanoemulsifying drug delivery system of glibenclamide using coffee husk as a low cost biosorbent. Powder Technol. 2014;256:352–60. http://doi.org/10.1016/j.powtec.2014.02.028

48. Balakumar K, Raghavan CV, Selvan NT, Prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerf. 2013;112:337–43. http://doi.org/10.1016/j.colsurfb.2013.08.025

49. Parmar N, Singla N, Amin S, Kohli K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerf. 2011;86(2):327–38. http://doi.org/10.1016/j.colsurfb.2011.04.016

50. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems,” Pharmaceutics. 2018;10(2):57. http://doi.org/10.3390/pharmaceutics10020057

51. Agrawal AG, Kumar A, Gide PS. Formulation of solid self-nanoemulsifying drug delivery systems using N-methyl pyrrolidone as cosolvent. Drug Dev Ind Pharm. 2015;41(4):594–604. http://doi.org/10.3109/03639045.2014.886695

52. Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opinion Drug Deliv. 2015;12(7):1121–33. http://doi.org/10.1517/17425247.2015.999038

53. Andriani Y, Effendy M, Muhammad TST, Mohamad, H. Antibacterial, radical-scavenging activities and cytotoxicity properties of Phaleria macrocarpa (Scheff.) Boerl. leaves in HepG2 cell lines. Int J Pharm Sci Res. 2011; 2(7):1700–6.

54. Brauchle E, Thude S, Brucker SY, Schenke-Layland K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep. 2014;4:4698. http://doi.org/10.1038/srep04698

55. Poon IKH, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death and Diff. 2010;17(3):381–97. http://doi.org/10.1038/cdd.2009.195

56. Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol. 2011;103:55–98.

Article Metrics
202 Views 14 Downloads 216 Total

Year

Month

Related Search

By author names