This study presents an innovative gas chromatographic-flame ionization detection (GC-FID) method, developed and validated in accordance with The International Council for Harmonisation (ICH) guidelines, for the quantitative analysis of chloroacetyl chloride, a potentially genotoxic impurity, in chlordiazepoxide hydrochloride active pharmaceutical ingredient. Due to the reactive and genotoxic nature of chloroacetyl chloride, precise quantification is imperative in the active pharmaceutical ingredient. The proposed method involves the conversion of chloroacetyl chloride into methyl 2-chloroacetate (MCA), enabling indirect quantification via a GC-FID approach employing a DB wax column. The validated GC-FID method displays exceptional features, such as remarkable linearity, ranging from 0.38 to 1.8 ppm with a correlation coefficient of 0.9998, as well as low detection and quantification limits of 0.19 and 0.38 ppm, and the method is specific without interference. The precision of the method expressed as the % RSD was 0.53%. The sample recovery ranging from 97.3% to 101.5%, confirms the method’s accuracy. Furthermore, three different batches of chlordiazepoxide hydrochloride underwent evaluation using this method. In conclusion, this method offers a highly sensitive approach for the precise quantification of chloroacetyl chloride in chlordiazepoxide hydrochloride drug substance, thereby ensuring compliance with the stringent safety standards of the pharmaceutical industry.
Birudukota S, Mangalapu B, Ramakrishna RA, Halder S, Palakollu VN. The development of a GC-FID method for indirect quantification of chloroacetyl chloride, a potential genotoxic impurity, in chlordiazepoxide hydrochloride drug substance. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.182017
1. Guo L, Zhang X, Zhou Z, Shi M, Jian X, Dong L. Case report: occupational poisoning incident from a leak of chloroacetyl chloride in Jinan, Shandong, China. Front Public Health. 2023;11:1215293. doi: https://doi.org/10.3389/fpubh.2023.1215293
2. Koenig G, Lohmar E, Rupprich N, Lison M, Gnass A. Chloroacetic acids. In Ullmann’s encyclopedia of industrial chemistry, 2012.
3. Morris ED, Bost JC. Acetic acid, halogenated derivatives. In Kirk-Othmer encyclopedia of chemical technology. 2002. doi: https://doi.org/10.1002/0471238961.0801121513151818.a01.pub2
4. Steinnes O, Shen Q, Hagen K. Molecular structure and conformation of gaseous chloroacetyl chloride as determined by electron diffraction. J Mole Struct. 1980 May 1;64:217–28. doi: https://doi.org/10.1016/0022-2860(80)80132-3
5. Zheng X, Luo L, Zhou J, Ruan X, Liu W, Zheng F. Development and validation of a general derivatization HPLC method for the trace analysis of acyl chlorides in lipophilic drug substances. J Pharm Biomed Anal. 2017 Jun 5;140:327–33. doi: https://doi.org/10.1016/j.jpba.2017.03.050
6. Dolan DG, Naumann BD, Sargent EV, Maier A, Dourson M. Application of the threshold of toxicological concern concept to pharmaceutical manufacturing operations. Regul Toxicol Pharmacol. 2005 Oct 1;43(1):1–9. doi: https://doi.org/10.1016/j.yrtph.2005.06.010
7. Delaney EJ. An impact analysis of the application of the threshold of toxicological concern concept to pharmaceuticals. Regul Toxicol Pharmacol. 2007 Nov 1;49(2):107–24. doi: https://doi.org/10.1016/j.yrtph.2007.06.008
8. Dewhurst I, Renwick AG. Evaluation of the threshold of toxicological concern (TTC)–challenges and approaches. Regul Toxicol Pharmacol. 2013 Feb 1;65(1):168–77. doi: https://doi.org/10.1016/j.yrtph.2012.03.007
9. Hennes EC. An overview of values for the threshold of toxicological concern. Toxicol Lett. 2012 Jun 20;211(3):296–303. doi: https://doi.org/10.1016/j.toxlet.2012.03.795
10. Kroes R, Renwick AG, Cheeseman M, Kleiner J, Mangelsdorf I, Piersma A, et al. Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol. 2004 Jan 1;42(1):65–83. doi: https://doi.org/10.1016/j.fct.2003.08.006
11. Renwick AG. Structure-based thresholds of toxicological concern—guidance for application to substances present at low levels in the diet. Toxicol Appl Pharmacol. 2005 Sep 1;207(2):585–91. doi: https://doi.org/10.1016/j.taap.2005.01.034
12. Snodin DJ. Genotoxic impurities: from structural alerts to qualification. Org Process Res Dev. 2010 Jul 16;14(4):960–76. doi: https://doi.org/10.1021/op100118e
13. Plošnik A, Vra?ko M, Sollner Dolenc M. Mutagenic and carcinogenic structural alerts and their mechanisms of action. Arhiv za higijenu rada i toksikologiju. 2016 Sep 22;67(3):169–82. doi: https://doi.org/10.1515/aiht-2016-67-2801
14. Raillard SP, Bercu J, Baertschi SW, Riley CM. Prediction of drug degradation pathways leading to structural alerts for potential genotoxic impurities. Org Process Res Dev. 2010 Jul 16;14(4):1015–20. doi: https://doi.org/10.1021/op100007q
15. Sutter A, Amberg A, Boyer S, Brigo A, Contrera JF, Custer LL, et al. Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharm. 2013 Oct 1;67(1):39–52. doi: https://doi.org/10.1016/j.yrtph.2013.05.001
16. Pradeep P, Judson R, DeMarini DM, Keshava N, Martin TM, Dean J, et al. An evaluation of existing QSAR models and structural alerts and development of new ensemble models for genotoxicity using a newly compiled experimental dataset. Comput Toxicol. 2021 May 1;18:100167. doi: https://doi.org/10.1016/j.comtox.2021.100167
17. Benigni R, Bossa C. Structural alerts of mutagens and carcinogens. Current Comput-Aided Drug Design. 2006 Jun 1;2(2):169–76.
18. Dobo KL, Greene N, Cyr MO, Caron S, Ku WW. The application of structure-based assessment to support safety and chemistry diligence to manage genotoxic impurities in active pharmaceutical ingredients during drug development. Regul Toxicol Pharmacol. 2006 Apr 1;44(3):282–93. doi: https://doi.org/10.1016/j.yrtph.2006.01.004
19. Enoch SJ, Cronin MT. Development of new structural alerts suitable for chemical category formation for assigning covalent and non-covalent mechanisms relevant to DNA binding. Mutat Res/Genet Toxicol Environ Mutagen. 2012 Mar 18;743(1–2):10–9. doi: https://doi.org/10.1016/j.mrgentox.2011.12.029
20. Munro IC, Renwick AG, Danielewska-Nikiel B. The threshold of toxicological concern (TTC) in risk assessment. Toxicol Lett. 2008 Aug 15;180(2):151–6. doi: https://doi.org/10.1016/j.toxlet.2008.05.006
21. Müller L, Mauthe RJ, Riley CM, Andino MM, De Antonis D, Beels C, et al. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul Toxicol Pharmacol. 2006 Apr 1;44(3):198–211. doi: https://doi.org/10.1016/j.yrtph.2005.12.001
22. Ridings JE, Barratt MD, Cary R, Earnshaw CG, Eggington CE, Ellis MK, et al. Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology. 1996 Jan 8;106(1–3):267–79. doi: https://doi.org/10.1016/0300-483X(95)03190-Q
23. Müller M, Birner G, Dekant W. Reactivity of haloketenes and halothioketenes with nucleobases: chemical characterization of reaction products. Chem Res Toxicol. 1998 May 18;11(5):454–63.
24. ICH M7. Assessment And Control Of DNA Reactive (Mutagenic) Impurities In Pharmaceuticals To Limit Potential Carcinogenic Risk M7(R1) Current Step 4 Version Dated 31 March 2017.
25. Teasdale A. ICH M7: assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. In: Teasdale A, Elder D, Nims RW, editors. ICH quality guidelines: an implementation guide. Hoboken, NJ: Wiley; 2017 Sep 27. pp. 667–99.
26. Barber C, Amberg A, Custer L, Dobo KL, Glowienke S, Van Gompel J, et al. Establishing best practice in the application of expert review of mutagenicity under ICH M7. Regul Toxicol Pharmacol. 2015 Oct 1;73(1):367–77. doi: https://doi.org/10.1016/j.yrtph.2015.07.018
27. Amberg A, Beilke L, Bercu J, Bower D, Brigo A, Cross KP, et al. Principles and procedures for implementation of ICH M7 recommended (Q) SAR analyses. Regul Toxicol Pharmacol. 2016 Jun 1;77:13–24. doi: https://doi.org/10.1016/j.yrtph.2016.02.004
28. Khan M, Jayasree K, Reddy KK, Dubey PK. A validated CE method for determining dimethylsulfate a carcinogen and chloroacetyl chloride a potential genotoxin at trace levels in drug substances. J Pharm Biomed Analy. 2012;58:27–33. doi: https://doi.org/10.1016/j.jpba.2011.09.019
29. Morissette MF, Wigman L, Tso J. Trace level determination of chloroacetyl chloride and degradation products by derivatization gas chromatography. J Pharm Biomed Anal. 2018 Jan 30;148:93–9. doi: https://doi.org/10.1016/j.jpba.2017.09.026
30. Langvardt PW, Nestrick TJ, Hermann EA, Braun WH. Derivatization procedure for the determination of chloroacetyl chloride in air by electron capture gas chromatography. J Chromatogr A. 1978 Jun 11;153(2):443–50. doi: https://doi.org/10.1016/S0021-9673(00)95504-3
31. Anerao A, Patil B, Solse V, Patil C. Quantification of genotoxic impurities in tadalafil by simple and sensitive gas chromatography technique. Anal Chem Lett. 2019 Jul 4;9(4):518–25. doi: https://doi.org/10.1080/22297928.2019.1652683
32. Kennedy D. Quantitative analysis of acid chlorides using automatic cold on-column injection. HRC and CC. J High Resol Chromatogr Chromatogr Commun. 1988;11(4):350–1. doi: https://doi.org/10.1002/jhrc.1240110413
33. Klein AJ, Morrell SG, Hicks OH, Worley JW. Determination of chloroacetyl chloride in air by high-performance liquid chromatography. Anal Chem. 1986 Apr 1;58(4):753–5. doi: https://doi.org/10.1021/ac00295a022
34. McCullough PR, Worley JW. Sampling of chloroacetyl chloride in air on solid support and determination by ion chromatography. Anal Chem. 1979 Jul 1;51(8):1120–2. doi: https://doi.org/10.1021/ac50044a007
35. Zhou Y, Ni W, Liu Y, Huang P, Su M. Determination of potential genotoxic impurities chloroacetyl chloride and chloroacetic acid in azintamide raw material. J China Pharm Univ. 2022:300–5.
36. Langhorst ML. Monitoring airborne reactive chemicals by derivatization and high performance thin layer chromatography—anhydrides, acid halides, isocyanates. Am Indust Hygiene Assoc J. 1985 May 1;46(5):236–43. doi: https://doi.org/10.1080/15298668591394743
37. Liu DQ, Sun M, Kord AS. Recent advances in trace analysis of pharmaceutical genotoxic impurities. J Pharm Biomed Anal. 2010 Apr 6;51(5):999–1014. doi: https://doi.org/10.1016/j.jpba.2009.11.009
38. Robinson DI. Control of genotoxic impurities in active pharmaceutical ingredients: a review and perspective. Org Process ResDev. 2010 Jul 16;14(4):946–59. doi: https://doi.org/10.1021/op900341a
39. Jacobson-Kram D, McGovern T. Toxicological overview of impurities in pharmaceutical products. Adv Drug Deliv Rev. 2007 Jan 10;59(1):38–42. doi: https://doi.org/10.1016/j.addr.2006.10.007
40. Raman NV, Prasad AV, Reddy KR. Strategies for the identification, control and determination of genotoxic impurities in drug substances: a pharmaceutical industry perspective. J Pharm Biomed Anal. 2011 Jun 25;55(4):662–7. doi: https://doi.org/10.1016/j.jpba.2010.11.039
41. Pierson DA, Olsen BA, Robbins DK, DeVries KM, Varie DL. Approaches to assessment, testing decisions, and analytical determination of genotoxic impurities in drug substances. Org Process Res Dev. 2009 Mar 20;13(2):285–91.
42. Marselos M, Vainio H. Carcinogenic properties of pharmaceutical agents evaluated in the IARC Monographs programme. Carcinogenesis. 1991 Oct 1;12(10):1751–66. doi: https://doi.org/10.1093/carcin/12.10.1751
43. Li Y, Yang H, Jin L, Wu WP, Yang D. Theoretical study on the mechanism of chloroacetyl chloride decomposition. Comput Theor Chem. 2016 Jun 15;1086:52–7. doi: https://doi.org/10.1016/j.comptc.2016.04.021
44. Bock H, Hirabayashi T, Mohmand S, Solouki B. Unstable intermediates in the gaseous phase: the thermal decomposition of acyl chlorides RCOCI. Angewandte Chemie Int Edit English. 1977 Feb;16(2):105–7.
45. ICH, Q2A (R1). Validation of analytical procedures: text and methodology. In: International Conference on Harmonization, Geneva, 2005. Vol. 1994, p. 17.
Year
Month