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INTRODUCTION
Chloroacetyl chloride, often abbreviated as 

chloroacetyl chloride (CAC), is a well-established raw material 
essential in both the pharmaceutical and chemical industries. Its 
primary purpose lies in the synthesis of critical intermediates 
and active pharmaceutical ingredients. This compound, known 
for its highly reactive and corrosive nature, poses significant 
hazards when it comes into contact with the skin, leading to 
severe chemical burns. In addition, chloroacetyl chloride can 
readily permeate the skin and affect the respiratory system [1]. 
Notably, chloroacetyl chloride exhibits favorable solubility 
in both water and methanol [2,3]. Its molecular structure 

[4]. includes a reactive “acyl-chloride” functional group 
(COCl), rendering it highly reactive toward nucleophiles. 
This characteristic makes it particularly suitable for acylation 
reactions [5], wherein it reacts with nucleophiles to generate 
acyl derivatives. However, it is crucial to acknowledge its 
extreme toxicity and corrosiveness, as the U.S. Environmental 
Protection Agency classifies it as an exceedingly hazardous 
substance. Comparatively, MCA, another chemical compound 
is considered “toxic” but may possess a lower degree of hazard 
when compared to chloroacetyl chloride. MCA (CH3O2CCl) 
contains an ester functional group, which exhibits reduced 
reactivity in comparison to acyl chlorides. Esters can undergo 
nucleophilic substitution reactions, but their reactivity is 
generally lower due to the presence of an electron-withdrawing 
chlorine atom. Interestingly, there is a paucity of information 
regarding the genotoxicity of chloroacetyl chloride. Hence, 
we base the risk assessment on the principles of the threshold 
of toxicological concern [6–9] and the structure-activity 
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ABSTRACT
This study presents an innovative gas chromatographic-flame ionization detection (GC-FID) method, developed 
and validated in accordance with The International Council for Harmonisation (ICH) guidelines, for the quantitative 
analysis of chloroacetyl chloride, a potentially genotoxic impurity, in chlordiazepoxide hydrochloride active 
pharmaceutical ingredient. Due to the reactive and genotoxic nature of chloroacetyl chloride, precise quantification 
is imperative in the active pharmaceutical ingredient. The proposed method involves the conversion of chloroacetyl 
chloride into methyl 2-chloroacetate (MCA), enabling indirect quantification via a GC-FID approach employing a 
DB wax column. The validated GC-FID method displays exceptional features, such as remarkable linearity, ranging 
from 0.38 to 1.8 ppm with a correlation coefficient of 0.9998, as well as low detection and quantification limits 
of 0.19 and 0.38 ppm, and the method is specific without interference. The precision of the method expressed as 
the % RSD was 0.53%. The sample recovery ranging from 97.3% to 101.5%, confirms the method’s accuracy. 
Furthermore, three different batches of chlordiazepoxide hydrochloride underwent evaluation using this method. In 
conclusion, this method offers a highly sensitive approach for the precise quantification of chloroacetyl chloride in 
chlordiazepoxide hydrochloride drug substance, thereby ensuring compliance with the stringent safety standards of 
the pharmaceutical industry.
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(APIs). This retention occurs due to the incomplete 
consumption of reagents in chemical reactions (as illustrated 
in Figure 1. In light of this, Liu et al. [37] emphasize 
the importance of sensitive analytical techniques for 
pharmaceutical genotoxic impurities (GTIs), especially 
when dealing with trace levels at ppm (parts per million) 
concentrations. The identification, determination, and 
management of GTIs in pharmaceutical substances have 
become a significant concern, particularly in the context of 
their potential association with human cancer [38–42]. In 
summary, derivatization procedures are widely used for CAC 
estimation, which enhances the sensitivity and selectivity of 
analytical techniques but comes with several drawbacks. 
They involve additional steps, leading to increased sample 
handling and the potential for errors and contamination. 
The derivatization process is time-consuming, adding to 
the overall analysis time and reducing sample throughput. 
Some analytes may be sensitive to the reagents and 
conditions, leading to degradation or decomposition [43,44]. 
Derivatization can increase the cost of analysis due to 
the need for specialized reagents and equipment, and it 
requires a high level of skill and expertise. Contamination 
risks are higher, and chemical waste is generated, adding 
to environmental concerns. Interference from the reagents 
and limitations on the applicability of derivatization to all 
compounds further compound these drawbacks, making 
it important to carefully consider its utility in specific 
analytical applications also this literature review underscores 
the need for rigorous assessment and control of traceable 
reagents in pharmaceutical production. These impurities, 
including chloroacetyl chloride, may pose unintended risks 
such as genotoxicity or carcinogenicity. Consequently, their 
concentrations must be minimized to levels deemed negligible 
in terms of human safety, even when complete elimination is 
unattainable. Chloroacetyl chloride, due to its high reactivity, 
can be converted to a more stable form, MCA, through a 
nucleophilic acylation reaction with methanol, as depicted 

relationship [10–20]. Chloroacetyl chloride is categorized 
as a class 3 substance. Considering its potential to react with 
DNA and its potential genotoxicity [21–23]. An evaluation in 
accordance with the International Conference of Harmonization 
(ICH) M7 guidelines is imperative [24–27]. Several analytical 
methods have been employed to analyze chloroacetyl chloride. 
For instance, Khan et al. [28] utilized a capillary zone 
electrophoretic method, Morissette et al. [29] employed a 
derivatization GC method with a limit of quantification (LOQ) 
of 0.03%w/w. Langvardt et al. [30] established a derivatization 
procedure using electron capture gas chromatography (GC). 
Ajit Anerao et al. published a GC technique for measuring 
the levels of chloroacetyl chloride and thionyl chloride in 
tadalafil [31]. Kennedy [32] studied quantitative analysis of 
acid chlorides using an automatic cold on-column injection 
method. Klein et al. [33] developed an high performance liquid 
chromatography (HPLC) method for determining chloroacetyl 
chloride in the air. McCullough et al. [34] documented their 
study involving the collection of chloroacetyl chloride from 
the air using solid support, with its quantification performed 
via ion chromatography. Zhou et al. [35] developed a 
chemical derivatization HPLC method for the determination 
of chloroacetyl chloride and chloroacetic acid in raw material 
of Azintamide. Furthermore, Langhorst [36] developed a 
resin-coated solid sorbent tube for monitoring air bon reactive 
chemicals including chloroacetyl chloride, acetic anhydride, and 
isocyanatoethyl methacrylate, derivatized using a reagent l-(2-
pyridyl) piperazine, and analyzed using an high-performance 
thin layer chromatography chromatographic technique. To 
the best of my knowledge, researchers have not reported any 
methods for determining trace levels of chloroacetyl chloride in 
chlordiazepoxide hydrochloride.

A notable feature of chloroacetyl chloride, when used 
as a pharmaceutical raw material, is that it often remains in 
trace amounts in the final Active Pharmaceutical Ingredients, in 
the present study Figure 1 shows the structures of chloroacetyl 
chloride, MCA, and chlordiazepoxide hydrochloride 

Figure 1. The structure of (a) chloroacetyl chloride, (b) MCA, and (c) chlordiazepoxide hydrochloride.
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in Figure 2. This transformation enables the subsequent 
determination of MCA using GC with a flame ionization 
detector method, offering a straightforward and sensitive 
means of indirectly estimating chloroacetyl chloride. This 
process has been verified through analytical techniques 
such as mass spectrometry, and gas chromatographic-flame 
ionization detection (GC-FID), with comparisons to standard 
MCA and CAC compounds. 

In this study, chloroacetyl chloride underwent 
complete conversion to MCA in the presence of methanol, as 
demonstrated by GC. Notably, Figures 8 and 9 display matching 
retention times and peak areas for MCA and chloroacetyl 
chloride standards 1.5 ppm spiked in chlordiazepoxide 
hydrochloride, providing clear evidence of the successful 
transformation and validating the complete conversion. In 
addition, liquid chromatography-mass spectrometry (LC-MS) 
analysis reinforced these findings, with the mass spectrum 
aligning with the expected profile of MCA In the presence 
of Dichloromethane and Ethylene Dichloride, chloroacetyl 
chloride exhibits stability, as depicted in Figures 13 and 14. 
However, when subjected to methanol, it undergoes conversion 
to MCA, as evidenced by the LC-MS mass spectrum provided 
in the supplementary material. These results collectively 
offer robust scientific evidence for the efficient conversion of 
chloroacetyl chloride to MCA in the specified experimental 
conditions. 

EXPERIMENTAL STUDY

Materials and methods

Chemicals and standards
We procured HPLC-grade methanol (≥99%) 

from standard reagents. Loba Chemie India supplied AR-
grade chloroacetyl chloride (≥99%). We used MCA (98%), 
manufactured by AVRA. Flowchem Pvt. Ltd. generously 
provided chlordiazepoxide hydrochloride API-free samples, 
with the purity of the APIs exceeding 99.5%. 

Instrumentation
We used a Shimadzu GC model The GC-2010 pro 

instrument featured a flame ionization detector and AOC20i is 
the auto-sampler model. The GC capillary column, DB Wax, 
with dimensions of 15 m length, 0.530 mm diameter, and a 1.0 
µm film thickness, was sourced from Agilent Technologies. 
We employed a Shimadzu make weighing balance model 

AP225WD, with 0.1 mg accuracy. We used standard volumetric 
flasks and pipettes for standard and sample preparations.

Chromatographic conditions
The final chromatographic conditions for the 

optimized method were established as follows: We utilized a DB 
Wax column with dimensions of 15 m in length and 0.53 mm in 
diameter, featuring a particle size of 1.0 µm. Initially, the oven 
temperature was set at 40°C for 5 minutes. Subsequently, it was 
ramped up at a rate of 10°C per minute until reaching 200°C, 
where it was maintained for 5 minutes. The injector temperature 
was set to 150°C, and the detector temperature was maintained 
at 230°C. The column flow rate was kept at 5 ml/minutes with 
a 2:1 split ratio. A 2 µl injection volume was introduced, using 
methanol as the diluent.

Preparing standard and sample solutions
To prepare the standard stock solution, we precisely 

weighed around 10 mg of “chloroacetyl chloride” and added 
it to a 100 ml standard volumetric flask. Then, we dissolved 
and diluted it with methanol until it reached the 100 ml mark, 
resulting in a solution with a concentration of 100 µg/ml for 
chloroacetyl chloride in the form of MCA.

To prepare the standard solution, we precisely 
transferred 1mL of the standard stock solution into a 100 ml 
standard flask and subsequently diluted it to the specified 
volume with methanol. A subsequent dilution of 0.75 ml of this 
solution with methanol in a 20 ml volumetric flask yielded a 
concentration of 37.5 ng/ml.

For the preparation of the test sample, we transferred 
50  mg of chlordiazepoxide hydrochloride sample, dissolving 
it in 2 ml of methanol, thereby achieving a concentration of 
25 mg/ml.

During the system suitability testing, we injected the 
1.5 ppm standard solution six times in replicates, to ensure that 
the relative standard deviation (RSD) for the area response of 
the standard solution remained below 10.0%.

The LOD solution was prepared based on a signal-
to-noise (S/N) ratio, yielding an observed lowest detectable 
concentration of 0.19 ppm, with an S/N ratio of 3.35.

To determine the LOQ solution, we applied a S/N 
ratio of 10.07, yielding the lowest quantifiable concentration 
of 0.38 ppm.

To assess linearity, we generated a series of solutions 
utilizing the standard stock solution, spanning a concentration 
range from 12.5% to 120%.

Method development 
We aimed to quantify chloroacetyl chloride as Methyl 

2-chloro acetate in “chlordiazepoxide hydrochloride” active 
drug substances during method development. Initially, the 
research was followed by a flow chart as mentioned in Figure 
3, we made several attempts using different GC stationary 
phases, including DB-5, DB-624, and Rtx-225. Ultimately, 
the DB-Wax GC column yielded a suitable response from the 
analyte. We evaluated various diluents, such as methylene 
dichloride, ethylene dichloride, ethanol, dimethyl formamide, 
dimethyl Acetamide, and dimethyl sulfoxide. Methanol, 

Figure 2. Nucleophilic acylation reaction, chloroacetyl chloride reacts with 
methanol to produce MCA.
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chosen for its ability to convert chloroacetyl chloride to 
MCA, was the selected solvent. Initially, we used the GC 
column DB-5 containing 5%-phenyl-methyl polysiloxane 
stationary phase, and prepared a 1.5-ppm standard solution 
for injection into the chromatographic system. Although we 
detected 1.5 ppm of chloroacetyl chloride, the peak shape was 
asymmetric, and the area response was low. Subsequently, we 
tried the GC column DB-624 a mid-polar column containing 
“6% cyanopropyl/phenyl, and 94% polydimethylsiloxane” 
stationary phase, and again, 1.5 ppm of chloroacetyl chloride 
was detected, but with a low area response and an improper 
baseline. We then attempted the Rtx-225 column containing a 
“cross-bonded 50% cyanopropyl methyl/50% phenyl methyl” 
stationary phase, and similar challenges were encountered 
with a low area response and an improper baseline. Finally, 
we selected the GC column DB-Wax column containing 
“polyethylene glycol” stationary phase, and used methanol as 
the diluent to convert chloroacetyl chloride to MCA, resulting 
in a well-detected 1.5 ppm of MCA in methanol using the 
DB Wax GC column. The method development was further 
validated with the DB Wax capillary column and methanol 
as the diluent, providing superior peak shape and baseline 
separation. The retention time of MCA was observed at 
approximately 10.80 minutes.

RESULTS AND DISCUSSIONS

Analytical method validation
We conducted the validation process, following 

the ICH-Q2 (R1) guidelines [45]. To affirm the established 
GC method’s dependability for the indirect determination 
of chloroacetyl chloride content in chlordiazepoxide 
active drug compounds. Table 1 displays the percent RSD 
(percentage RSD) of MCA (1.5 ppm) from six replicates, 
demonstrating a percentage RSD of 1.386% when utilizing the 
DB Wax GC column. The validation, in alignment with ICH 
recommendations, encompassed the assessment of the following 
parameters: system suitability and specificity, accuracy, limits 
of quantification and detection, range and linearity, precision, 
and solution stability.

Specificity and system suitability
In the presence of potential interfering chemicals, 

specificity ensures precise measurement and differentiation 
of the target analyte, while system suitability validates the 
consistent and dependable performance of the analytical 
system. To confirm the proper functioning of the system and 
data generation, we prepared a 1.5-ppm methyl 2-chloro acetate 
standard solution in methanol and introduced it into the system 

Figure 3. Flow chart of experimental work.
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Linearity and range
In the process of method validation, we assess the 

method’s ability to generate accurate and proportionate analytical 
responses within a defined concentration range, thereby ensuring 
its suitability for quantitative analysis. We meticulously 
prepared standard solutions of methyl 2-chloro acetate at diverse 
concentrations spanning from the limit of detection to 120% 
(12.5%, 25%, 50%, 80%, 100%, and 120%) of the working 
level (1.5 ppm). Subsequently, we conducted chromatographic 
analyses on these solutions, as outlined in Table 4 and Figure 7, 
to ascertain the linearity and range of the method.

We calculated the correlation coefficient between the 
mean area response and the standard solution concentration. 
The correlation coefficient obtained from the linearity graph 
plotting the mean area response against concentration in ppm 
was 0.9996. The linearity extended from the LOQ (0.38 ppm) 
to the higher level (1.8 ppm) and the regression statistics for 
linearity were displayed in Table 5.

Accuracy (recovery)
We evaluate the method’s capability to accurately 

quantify and recover known analyte quantities, thereby 
demonstrating its precision and reliability in real-world sample 
analysis. For each level, we prepared three sample solutions 
by spiking a homogeneous chlordiazepoxide hydrochloride 
sample at concentrations of 25%, 50%, 100%, and 120%. We 
subsequently analyzed these solutions using the prescribed 
method and calculated the recovery rates to assess the 

six times. The percentage RSD for the six replicates of the 
standard solution was 1.386, significantly below the maximum 
acceptable threshold of 15.0%, thus confirming the system’s 
suitability.

In the assessment of method specificity, we also 
introduced various listed solvents; however, no interference 
was observed at the retention time of the analyte peak. Further 
testing revealed the absence of interference from the blank at 
the 10.8-minute retention time, corresponding to the methyl 
2-chloro acetate standard peak. Consequently, we concluded 
that the MCA peak remained unaffected by the presence of 
diluent (blank) peaks.

Precision 
The method’s precision demonstrates its ability to 

consistently generate reproducible and consistent results 
when analyzing the same sample under uniform conditions, 
indicating the degree of random error in measurements. In 
the system suitability results presented in Table 1, an RSD of 
1.386 was obtained from six replicates of 1.5-ppm standard 
chloroacetyl chloride solution, demonstrating the accuracy 
of the method, to further assess precision; we prepared six 
homogeneous samples of chlordiazepoxide hydrochloride, 
calculating the percentage RSD for the content of chloroacetyl 
chloride in these samples. The chloroacetyl chloride content was 
found to be below the detection limit initially. Subsequently, 
we spiked known impurity chloroacetyl chloride up to the 
specification limit of 1.5 ppm to establish method precision. 
The percentage RSD for the content of chloroacetyl chloride 
in six preparations of spiked test samples was observed as 
0.53%, which did not exceed the limit of 15.0%, as indicated 
in Table 2. Consequently, we have confirmed the method’s 
precision.

Detection and quantitation limits
 We established the detection and quantitation limits 

through precise quantification of substances at the lowest levels 
within sample matrices. Utilizing the S/N ratio approach as 
presented in Table 3, we determined the limit of quantitation 
to be 0.38 ppm and the limit of detection to be 0.19 ppm and 
corresponding chromatograms as shown in Figures 4–6.

Table 1. The precision table contains results from six replicates of the 
chloroacetyl chloride standard solution (1.5 ppm).

 Replicates Standard solution  
(1.5 ppm) area responses

Retention 
time in minutes

1. 4,073 10.830

2. 4,027 10.832

3. 4,007 10.832

4. 4,070 10.834

5. 4,028 10.835

6. 4,,056 10.838

Average 4,067.333 10.838

%RSD 1.386 0.006

Table 2. Spiked chloroacetyl chloride into chlordiazepoxide 
hydrochloride at a specification level of 1.5 ppm.

Sl.no

Standard 
1.5 ppm 

area 
response

Retention time 
in minutes

Measuring the recovery 
of chloroacetyl 

chloroacetate spiked 
into chlordiazepoxide 
hydrochloride (ppm)

1 4,021 10.833 1.514

2 4,051 10.837 1.525

3 4,071 10.838 1.533

4 4,045 10.837 1.523

5 4,017 10.834 1.513

6 4,022 10.852 1.515

Avg 4,037.833 10.839 1.520 

SD 21.414 0.007 0.008 

%RSD 0.530 0.064 0.520 

Table 3. Detection limit and quantification limit results.

Test  Concentration 
(ppm)

Area 
response S/N ratio

Limit of detection 
12.5%

0.19 453  3.4

Limit of 
quantitaion 25%

0.38 907.3  10.1
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Table 4. Linearity and the range of the method. 

S.no.

Percent with 
respect to the 
specification 
limit 1.5 ppm

ppm Average area 
response

Correlation 
coefficient

1 12.5 0.19 463.6 0.9996

2 25 0.38 907.3

3 50 0.75 1,981.0

4 80 1.2 3,156.0

5 100 1.5 4,039.0

6 120 1.8 4,837.3
Figure 4. GC-FID chromatogram diluent blank chromatogram, no interference 
observed around main peak retention time 10.8 minutes.

Figure 5. GC-FID chromatogram: MCA spiked sample (0.19 ppm LOD)

Figure 6. GC-FID chromatogram: MCA spiked sample (0.38 ppm LOQ).

Figure 7. Linearity graph mean area response versus concentration in ppm.

Table 5. Regression statistics for linearity. 

Multiple R 0.999845092

R square 0.999690208

Adjusted R square 0.99961276

Standard error 0.012561618

Observations 6

procedure’s accuracy. The recovery rates ranged from 97.3% to 
101.5% for solutions within 25% to 120% concentration range, 
confirming the method’s accuracy, as outlined in Table 6. 

Finally, we conducted an indirect assessment of 
chloroacetyl chloride content by employing the developed 
and validated method on the chlordiazepoxide hydrochloride 
test samples. Chloroacetyl chloride was not detected in three 
batches of API samples as shown in Figures 10–12 and assay 
Table 13.

Robustness
We assessed the method’s robustness by evaluating 

its ability to consistently yield reliable results despite minor 
variations in experimental conditions, demonstrating its 
resilience and reliability in practical applications. Through 
a series of experiments, we demonstrated that this method 
maintains its robustness even when subjected to slight 
variations in gas chromatographic conditions. Throughout the 

experimental process, systematic alterations were implemented 
to optimize various instrumental parameters. Noteworthy 
adjustments included fluctuations in the carrier gas flow 
rate, ranging from 4.5 to 5.5 ml/min, with corresponding 
results meticulously documented in Table 7. In addition, 
subtle modifications were made to the detector temperature, 
demonstrating a range of variation from 220°C to 240°C, as 
systematically illustrated in Table 8. The injector temperature 
experienced adjustments within the interval of 135°C to 165°C, 
meticulously detailed in Table 9. Further refinements involved 
precise adjustments in the initial oven temperature, ranging from 
36°C to 44°C, as systematically outlined in Table 10. Moreover, 
the temperature ramping rate underwent deliberate variation, 
oscillating between 8°C/min and 12°C/min, with methodical 
documentation provided in Table 11. These sequential and 
controlled changes were executed to assess their impact on 
the overall analytical performance and are fundamental to the 
refinement of the analytical methodology employed in this 
study. Under this diverse range of conditions, the tailing factor 
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Table 6. Accuracy of methyl-2- chloroacetate in chlordiazepoxide hydrochloride at different levels (n = 3).

Level Preparations Amount 
measured (ppm)

Amount as 
such in run 

(ppm)

Amount added 
(ppm)

% 
Recovery

Average% 
recovery

% RSD of 
recovery

01 0.370

Not detected

0.38 97.49

97.32 0.15LOQ 02 0.365 0.38 97.29

03 0.365 0.38 97.19

01 0.762

Not detected

0.75 10 1.54

101.54 0.0550% 02 0.762 0.75 101.59

03 0.761 0.75 101.49

01 1.200

Not detected

1.2 100.00

99.63 0.8080% 02 1.202 1.2 100.19

03 1.185 1.2 98.71

01 1.521

Not detected

1.5 101.43

101.45 0.47100% 02 1.529 1.5 101.94

03 1.515 1.5 100.98

01 1.811

Not detected

1.8 100.59

100.92 0.37120% 02 1.815 1.8 100.86

03 1.824 1.8 101.33

Table 7. Robustness study: carrier gas flow rate variation (n = 3) versus area response of MCA, carrier gas flow rate (4.5 to 5.5 ml/minutes).

Retention time 
(minutes)

Area response for 
carrier gas flowrate 

4.5 ml/minutes

  Retention time 
(minutes)

Area response for 
carrier gas flowrate 5 

ml/minutes

  Retention time 
(minute)

Area response for 
carrier gas flowrate 

5.5 ml/min

11.139 4,153 10.832 4,027 10.498 4,097

11.140 4,143 10.830 4,073 10.502 4,056

11.136 4,109 10.832 4,007 10.497 4,055

Avg 4,135.000 Avg 4,035.667 Avg 4,069.333 

SD 23.065 SD 33.843 SD 23.965 

%RSD 0.558 %RSD 0.839 %RSD 0.589 

Tailing Factor 1.072 Tailing Factor 1.043 Tailing Factor 1.03

Theoretical 
Plate(USP)

182,548   Theoretical 
Plate(USP)

149,177   Theoretical 
Plate(USP)

140,289

Table 8. Robustness study: detector temperature variation (n = 3) versus area response of MCA (°C 220–240).

Retention time 
(minutes)

Area response at 
detector temperature 

set 220°C 

  Retention time 
(minutes)

Area response at 
detector temperature 

set 230°C )

  Retention time 
(minutes)

Area response at 
detector temperature 

set 240°C 

10.814 4,043 10.832 4,027 10.809 4,094

10.814 4,033 10.830 4,073 10.815 4,076

10.817 4,020 10.832 4,007 10.815 4,008

Avg 4,032.000 Avg 4,035.667 Avg 4,059.333 

SD 11.533 SD 33.843 SD 45.358 

%RSD 0.286 %RSD 0.839 %RSD 1.117 

Tailing Factor 1.031 Tailing Factor 1.043 Tailing factor 1.016

Theoretical 
plate(USP)

162,428   Theoretical 
plate(USP)

149,177   Theoretical 
plate(USP)

157,286
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Solution stability
A solution maintains its chemical and physical 

properties, including component concentration and integrity, 

consistently stayed below 1.5, and the theoretical plate numbers 
consistently exceeded 100,000. In addition, we consistently 
observed peak area measurements with RSD below 5.0%.

Table 9. Robustness study: injector temperature variation (n = 3) versus area response of MCA (°C 135–165).

Injector temperature manipulation 135°C–165°C 

Retention time 
(minutes)

Area response at 
injector temperature 

set 135°C 

  Retention time 
(minutes)

Area response at 
injector temperature 

set 150°C 

  Retention time 
(minutes)

Area response at 
injector temperature 

set 165°C 

10.780 4,006 10.832 4,027 10.762 4,056

10.785 4,019 10.830 4,073 10.772 4,020

10.797 4,016 10.832 4,007 10.784 4,086

Avg 4,013.667 Avg 4,035.667 Avg 4,054.000 

SD 6.807 SD 33.843 SD 33.045 

%RSD 0.170 %RSD 0.839 %RSD 0.815 

Tailing Factor 0.962 Tailing Factor 1.043 Tailing Factor 1.157

Theoretical plate 
(USP)

145,024   Theoretical 
plate(USP)

149,177   Theoretical plate 
(USP)

161,028

Table 10. Robustness study: initial oven temperature variation (n = 3) versus area response of MCA (°C 36–44).

Retention time (min)
Area response 
for initial oven 

temperature 36°C 
  Retention time 

(minutes)

Area response 
for initial oven 

temperature 40°C 
  Retention time 

(minutes)

Area response 
for initial oven 

temperature 44°C 

11.285 4,025   10.832 4,027   11.312 4,040

11.286 4,065 10.830 4,073 11.316 4,086

11.285 4,059 10.832 4,007 11.316 4,038

Avg 4,049.667 Avg 4,035.667 Avg 4,054.667 

SD 21.572 SD 33.843 SD 27.154 

%RSD 0.533 %RSD 0.839 %RSD 0.670 

Tailing Factor 1.072 Tailing Factor 1.043 Tailing Factor 1.034

Theoretical plate 
(USP)

182,548   Theoretical plate 
(USP)

149,177   Theoretical plate 
(USP)

179,942

Table 11. Robustness study: ramp rate (n = 3) versus area response of MCA (8°C/minutes to 12°C/minutes).

Retention time (minutes)
Area response for 

ramp rate 8°C/
minutes 

  Retention time 
(minutes)

Area response for 
ramp rate 10°C/min   Retention time 

(minutes)
Area Response for 

ramp rate 12°C/min 

11.553 4,024   10.832 4,027   10.230 4,089

11.553 4,013 10.830 4,073 10.231 4,045

11.556 4,068 10.832 4,007 10.245 4,085

Avg 4,035.000 Avg 4,035.667 Avg 4,073.000 

SD 29.103 SD 33.843 SD 24.331 

%RSD 0.721 %RSD 0.839 %RSD 0.597 

Tailing factor 1.051 Tailing factor 1.043 Tailing factor 1.096

Theoretical plate (USP) 130,761   Theoretical plate 
(USP)

149,177   Theoretical plate 
(USP)

154,379
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over a specified period under defined storage conditions, 
indicating its solution stability. To assess its stability over a 
3-day period, we injected the standard solution of 1.5 ppm into 
the system, and the results in Table 12 demonstrate that the 
solution remained stable at room temperature (25°C) in clear 
glass throughout the entire duration.

Table 12. Solution stability results. 

S.no. Stability interval Peak response of 1.5 ppm 
of the standard solution

 1 Initial preparation 4,071

2 After 24 hours 4,073

3 After 48 hours 4,038

4 After 72 hours 4,021

% RSD 0.63

Table 13. Assay of chloroacetyl chloride into chlordiazepoxide 
hydrochloride. 

S.no. Standard 1.5 ppm 
area response

 Retention time in 
minutes

1 4,018 10.777

2 4,004 10.778

3 4,016 10.790

4 4,001 10.790

5 4,047 10.799

6 4,060 10.800

Average 4,024 10.789 

SD 23.89 0.01

% RSD 0.59 0.09

Chlordiazepoxide 
hydrochloride

Sample area 
response

Retention time in minutes

Blank-methanol Not detected 10.70 to 10.80

Sample-1 Not detected 10.70 to 10.80

Sample-2 Not detected 10.70 to 10.80

Sample-3 Not detected 10.70 to 10.80

Figure 8. GC-FID chromatogram: chloroacetyl chloroacetate standard 1.5 ppm 
spiked in chlordiazepoxide hydrochloride sample. 

Figure 9. GC-FID Chromatogram: MCA Standard 1.5 ppm spiked in 
chlordiazepoxide hydrochloride sample. 

Figure 10. GC-FID chromatogram: chlordiazepoxide hydrochloride API 
sample-01 in diluent blank. 

Figure 11. GC-FID chromatogram: chlordiazepoxide hydrochloride API 
sample-02 in diluent blank. 

Figure 12. GC-FID chromatogram: chlordiazepoxide hydrochloride API 
sample-03 in diluent blank. 
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CONCLUSION
In summary, we have successfully developed a simple, 

expeditious, and secure (GC-FID) method for the quantitative 
determination of chloroacetyl chloride in chlordiazepoxide 
hydrochloride drug substance. This method has demonstrated 
exceptional precision and accuracy throughout its development 
and validation stages. In full compliance with the rigorous 
guidelines outlined by the International Conference on 
Harmonisation (ICH), our method has excelled in numerous 
critical analytical parameters, including specificity, system 
suitability, precision, detection and quantification limits, 
linearity, accuracy (recovery), robustness, and solution stability 
for three days.

The successful application of this method in the 
analysis of three distinct batches of chlordiazepoxide 
hydrochloride samples, all of which did not exhibit any trace 
of MCA, underscores the method’s reliability and suitability 
for use in the pharmaceutical industry. In upholding its 
commitment to ensuring patient safety, the pharmaceutical 
sector can confidently rely on this robust analytical approach 
to maintain the quality and integrity of the active drug 
substance.

LIST OF ABBREVIATIONS
CAC, Chloroacetyl chloride; GC-FID, Gas chromatography 

with flame ionization detector; ICH, The International 
Conference of Harmonization; MCA, Methyl 2-chloroacetate
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