Neuroprotective effects of g-Aminobutyric acid-enriched germinated riceberry extract in cerebral ischemic reperfusion-induced cognitive impairment mice

PayungsakTantipaiboonwong KomsakPintha NapapanKangwan DejMann PrathakphongRiyamongkhol Watcharaporn Preedapirom Jeefoo   

Open Access   

Published:  Jun 12, 2024

DOI: 10.7324/JAPS.2024.175285
Abstract

This study investigates the neuroprotective effects of riceberry (RB) and germinated riceberry (GRB) extracts on cognitive impairment induced by cerebral ischemia-reperfusion (IR) injury. Our findings indicate that the germination process reduces total phenolic content and total antioxidant capacity, accompanied by a decline in antioxidant activity. However, the enriched γ-aminobutyric acid (GABA) content significantly increased in the GRB extract, reaching an 11.55-fold higher concentration than the RB extract. Male ICR mice were used in this study and received RB (500 mg/kg BW) or GRB (250 and 500 mg/kg BW) extracts for 28 days, with cerebral IR injury induced on day 21. Memory and learning were assessed using the Morris water maze on days 22–27 and novel object recognition on day 28. Both RB and GRB extracts improved spatial and recognition memory while reducing hippocampal malondialdehyde levels, indicating decreased oxidative stress. GRB demonstrated superior effects, displaying accelerated learning responses and enhanced retention of spatial memory. The study highlights the potential of GRB, attributed to its high GABA content, in mitigating cognitive impairment induced by cerebral IR injury. Further research is needed to explore the underlying mechanisms and optimize therapeutic applications.


Keyword:     Germinated riceberry extract Ý-aminobutyric acid cerebral ischemic-reperfusion neuroprotective effects cognitive impairment


Citation:

Tantipaiboonwong P, Pintha K, Kangwan N, Mann D, Riyamongkhol P, Jeefoo WP. Neuroprotective effects of γ-Aminobutyric acid-enriched germinated riceberry extract in cerebral ischemic reperfusion-induced cognitive impairment mice. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.175285

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Settapramote N, Laokuldilok T, Boonyawan D, Utama-ang N. Physiochemical, antioxidant activities and anthocyanin of riceberry rice from different locations in Thailand. Food Appl Biosci J. 2018;6(Special):84–94.

2. Yamuangmorn S, Prom-U-Thai C. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants (Basel). 2021 May 24;10(6):833. doi: https://doi.org/10.3390/antiox10060833.

3. Yodmanee S, Karrila TT, Pakdeechanuan P. Physical, chemical and antioxidant properties of pigmented rice grown in Southern Thailand. Int Food Res J. 2011;18(3):901–6.

4. Peanparkdee M, Iwamoto S. Bioactive compounds from by-products of rice cultivation and rice processing: extraction and application in the food and pharmaceutical industries. Trends Food Sci Technol. 2019;86:109–17.

5. Poosri S, Thilavech T, Pasukamonset P, Suparppromand C, AdisakwattanaS. Studies on riceberry rice (Oryza sativa L.) extract on the key steps related to carbohydrate and lipid digestion and absorption: a new source of natural bioactive substances. NFS J. 2019;17:17–23. doi: https://doi.org/10.1016/j.nfs.2019.10.002

6. Arjinajarn P, Chueakula N, Pongchaidecha A, Jaikumkao K, Chatsudthipong V, Mahatheeranont S, et al. Anthocyanin-rich riceberry bran extract attenuates gentamicin-induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Biomed Pharmacother.2017 Aug;92:412–20. doi: https://doi.org/10.1016/j.biopha.2017.05.100. Epub 2017 May 27.

7. Leardkamolkarn V, Thongthep W, Suttiarporn P, Kongkachuichai R, Wongpornchai S, Wanavijitr A. Chemopreventive properties of the bran extracted from a newly-developed Thai rice: The Riceberry. Food Chem. 2011;125(3):978–85. doi: https://doi.org/10.1016/j.foodchem.2010.09.093

8. Pannangrong W, Wattanathorn J, Muchimapura S, Tiamkao S, Tong-Un T. Purple rice berry is neuroprotective and enhances cognition in a rat model of Alzheimer’s disease. J Med Food. 2011 Jul-Aug;14(7-8):688–94. doi: https://doi.org/10.1089/jmf.2010.1312. Epub 2011 Apr 21.

9. Wolters FJ, Zonneveld HI, Hofman A, van der Lugt A, Koudstaal PJ, Vernooij MW, et al. A; heart-brain connection collaborative research group. Cerebral perfusion and the risk of Dementia: a population-based study. Circulation. 2017 Aug 22;136(8):719–28. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.027448. Epub 2017 Jun 6.

10. Park JH, Hong JH, Lee SW, Ji HD, Jung JA, Yoon KW, et al. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer’s disease: a positron emission tomography study in rats. Sci Rep. 2019 Oct 1;9(1):14102. doi: https://doi.org/10.1038/s41598-019-50681-4.

11. Bonventre JV, Huang Z, Taheri MR, O’Leary E, Li E, Moskowitz MA, et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature. 1997 Dec 11;390(6660):622–5. doi: https://doi.org/10.1038/37635.

12. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020 Mar 19;14:51 doi: https://doi.org/10.3389/fncel.2020.00051.

13. Puzio M, Moreton N, O’Connor JJ. Neuroprotective strategies for acute ischemic stroke: targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signaling. Brain Disorders. 2022;5(2022):100030. doi: https://doi.org/10.1016/j.dscb.2022.100030

14. Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, et al. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci. 1995 Oct;15(10):6377–88. doi: https://doi.org/10.1523/JNEUROSCI.15-10-06377.1995.

15. Schwartz-Bloom RD, Sah R. gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem. 2001 Apr;77(2):353–71. doi: https://doi.org/10.1046/j.1471-4159.2001.00274.x.

16. Nacha J, Soodpakdee K, Chamyuang S. Nutritional improvement of germinated riceberry rice (Oryza sativa) cultivated with pleurotus ostreatus mycelium. Trends Sci. 2023;20(9):5574. doi: https://doi.org/10.48048/tis.2023.5574

17. Komatsuzaki N, Tsukahara K, Toyoshima H, Suzuki T, Shimizu N, Kimura T. Effect of soaking and gaseous treatment on GABA content in germinated brown rice, J Food Eng. 2007;789(2):556–60. doi: https://doi.org/10.1016/j.jfoodeng.2005.10.036

18. Iwaki K, and Kitada Y. Availability of partially milled rice as a daily source of γ-aminobutyric acid. Food Sci Technol Res. 2007;13(1):41–4. doi: https://doi.org/10.3136/fstr.13.41

19. Herbert P, Barros P, Ratola N and Alves A. HPLC determination of amino acids in musts and port wine using OPA/FMOC derivatives. J Food Sci. 2000;65(7):1130–33. doi: https://doi.org/10.1111/j.1365-2621.2000.tb10251.x

20. Khanaree C, Punfa W, Tantipaiboonwong P, Nuntaboon P, Suttajit M, Topanurak S, et al. In vitro anti-metastasis of Perilla frutescens leaf water extract on aggressive human breast cancer cells. J Assoc Med Sci. 2022;55(3):51–9.

https://doi.org/10.12982/JAMS.2022.024

21. Tantipaiboonwong P, Pintha K, Chaiwangyen W, Chewonarin T, Pangjit K, Chumphukam O, et al. Anti-hyperglycaemic and anti-hyperlipidaemic effects of black and red rice in streptozotocin-induced diabetic rats. Sci Asia. 2017;43(2017):281–8. doi: https://doi.org/10.2306/scienceasia1513-1874.2017.43.281

22. Punfa W, Khanaree C, Pintha K, Chumphukam O, Suttajit M, Tantipaiboonwong P. Protective effect of Perilla leaf extract against ROS formation and inflammation induced by TNF-α in A549 human lung carcinoma cell line. Songklanakarin J Sci Technol. 2022;44(2):361–9.

23. Kangwan N, Pintha K, Preedapirom W, Tantipaiboonwong P, Chumphukam O, Suttajit M. Learning and memory enhancing effects of anthocyanin in black rice extract on cerebral ischaemia in mice. Sci Asia. 2015;41(2015):315–21. doi: https://doi.org/10.2306/scienceasia1513-1874.2015.41.315

24. Chaiyasut C, Sivamaruthi BS, Pengkumsri N, Keapai W, Kesika P, Saelee M, et al. Germinated Thai black rice extract protects experimental diabetic rats from oxidative stress and other diabetes-related consequences. Pharmaceuticals (Basel). 2016 Dec 28;10(1):3.

https://doi.org/10.3390/ph10010003.

25. Kim H, Kim OW, Ahn JH, Kim BM, Oh J, Kim HJ. Metabolomic analysis of germinated brown rice at different germination stages. Foods. 2020 Aug 17;9(8):1130. doi: https://doi.org/10.3390/foods9081130.

26. Jannoey P, Niamsup H, Lumyong S, Tajima S, Nomur M, Chairote G. γ-aminobutyric acid (GABA) accumulations in rice during germination. Chiang Mai J Sci. 2010;37(1):124–33.

27. Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol. 2015 Oct 6;6:1520. doi: https://doi.org/10.3389/fpsyg.2015.01520.

28. McCormick DA. GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol. 1989 Nov;62(5):1018–27. doi: https://doi.org/10.1152/jn.1989.62.5.1018.

29. Oo EM, Ruamyod K, Khowawisetsut L, Turbpaiboon C, Chaisuksunt V, Uawithya P, et al. Germinated brown rice attenuates cell death in vascular cognitive impaired mice and glutamate-induced toxicity In HT22 Cells. J Agric Food Chem. 2020 May 6;68(18):5093–106. doi: https://doi.org/10.1021/acs.jafc.9b07957. Epub 2020 Apr 24.

30. Zhang R, Lu H, Tian S, Yin J, Chen Q, Ma L, et al. Protective effects of pre-germinated brown rice diet on low levels of Pb-induced learning and memory deficits in developing rat. Chem Biol Interact. 2010 Mar 30;184(3):484–91. doi: https://doi.org/10.1016/j.cbi.2010.01.043. Epub 2010 Feb 6.

31. Mamiya T, Asanuma T, Kise M, Ito Y, Mizukuchi A, Aoto H, et al. Effects of pre-germinated brown rice on beta-amyloid protein-induced learning and memory deficits in mice. Biol Pharm Bull. 2004 Jul;27(7):1041–5. doi: https://doi.org/10.1248/bpb.27.1041.

32. Handayani ES, Susilowati R, Setyopranoto I, Partadiredja G. Transient bilateral common carotid artery occlusion (tBCCAO) of rats as a model of global cerebral ischemia. Bangladesh J Med Sci. 2019;18(3):491–500.

33. Naderi Y, Sabetkasaei M, Parvardeh S, Moini Zanjani T. Neuroprotective effects of pretreatment with minocycline on memory impairment following cerebral ischemia in rats. Behav Pharmacol. 2017 Apr;28(2 and 3-Spec Issue):214–22. doi: https://doi.org/10.1097/FBP.0000000000000297.

34. D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001 Aug;36(1):60–90. doi: https://doi.org/10.1016/s0165-0173(01)00067-4.

35. Xu L, Gao Y, Hu M, Dong Y, Xu J, Zhang J, et al. Edaravone dexborneol protects cerebral ischemia reperfusion injury through activating Nrf2/HO-1 signaling pathway in mice. Fundam Clin Pharmacol. 2022 Oct;36(5):790–800. doi: https://doi.org/10.1111/fcp.12782. Epub 2022 May 4.

36. Yang CJ, Li X, Feng XQ, Chen Y, Feng JG, Jia J, et al. Activation of LRP1 ameliorates cerebral ischemia/reperfusion injury and cognitive decline by suppressing neuroinflammation and oxidative stress through TXNIP/NLRP3 signaling pathway in mice. Oxid Med Cell Longev. 2022 Aug 18;2022:8729398. doi: https://doi.org/10.1155/2022/8729398.

37. Choi S, Jang DC, Chung G, Kim SK. Transcutaneous auricular vagus nerve stimulation enhances cerebrospinal fluid circulation and restores cognitive function in the rodent model of vascular cognitive impairment. Cells. 2022 Sep 27;11(19):3019. doi: https://doi.org/10.3390/cells11193019.

38. Thong-Asa W, Puenpha K, Lairaksa T, Saengjinda S. Neuroprotective effects of betanin in mice with cerebral ischemia-reperfusion injury. Exp Anim. 2023 Aug 7;72(3):336–45. doi: https://doi.org/10.1538/expanim.22-0176. Epub 2023 Feb 8.

39. O’Reilly RC, Rudy JW. Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev. 2001 Apr;108(2):311–45. doi: https://doi.org/10.1037/0033-295x.108.2.311.

40. Shang J, Jiao J, Yan M, Wang J, Li Q, Shabuerjiang L, et al. Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomed Pharmacother. 2023 May;161:114534. doi: https://doi.org/10.1016/j.biopha.2023.114534. Epub 2023 Mar 16.

41. Zhang N, and Jing P. Red cabbage anthocyanins attenuate cognitive impairment by attenuating neuroinflammation and regulating Gut Microbiota in Aging Mice. J Agric Food Chem. 2023;71(41):15064–72. doi: https://doi.org/10.1021/acs.jafc.3c03183

42. Pinky NF, Wilkie CM, Barnes JR, Parsons MP. Region- and activity-dependent regulation of extracellular glutamate. J Neurosci. 2018 Jun 6;38(23):5351–66. doi: https://doi.org/10.1523/JNEUROSCI.3213-17.2018. Epub 2018 May 14.

43. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011 Apr 15;14(8):1505–17. doi: https://doi.org/10.1089/ars.2010.3576. Epub 2011 Jan 9.

44. Kang TC, Park SK, Hwang IK, An SJ, Choi SY, Cho SW, et al. Spatial and temporal alterations in the GABA shunt in the gerbil hippocampus following transient ischemia. Brain Res. 2002;944(1-2):10–8. doi: https://doi.org/10.1016/s0006-8993(02)02596-9

45. Tabassum S, Ahmad S, Madiha S, Khaliq S, Shahzad S, Batool Z, et al. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile in hippocampus of rats. Pak J Pharm Sci. 2017May;30(3(Suppl.):1013–21.

46. Han D, Zhang QG, Li C, Zong YY, Yu CZ, Wang W, et al. Co-activation of GABA receptors inhibits the JNK3 apoptotic pathway via the disassembly of the GluR6-PSD95-MLK3 signaling module in cerebral ischemic-reperfusion. FEBS Lett. 2008;582(9):1298–306. doi: https://doi.org/10.1016/j.febslet.2008.02.044

47. Qi SH, Liu Y, Wang WW, Wang M, and Zhang GY. Neuroprotection of ethanol against cerebral ischemia/reperfusion induced brain injury through GABA receptor activation. Brain Res. 2009;1276:151–8. doi: https://doi.org/10.1016/j.brainres.2009.04.040

48. Xu J, Li C, Yin XH and Zhang GY. Additive neuroprotection of GABA A and GABA B receptor agonists in cerebral ischemic injury via PI-3K/Akt pathway inhibiting the ASK1-JNK cascade. Neuropharmacology. 2008;54(7):1029–40. doi: https://doi.org/10.1016/j.neuropharm.2008.01.014

49. Sanem A?ÇI, Demirci S, Halil A?ÇI, Do?uç DK, and Onaran ?. Neuroprotective effects of pregabalin on cerebral ischemia and reperfusion. Balkan Med J. 2016;33(2):221–7.

50. Fink K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S, Clusmann H, et al. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology. 2002;42(2):229–36. doi: https://doi.org/10.1016/S0028-3908(01)00172-1

51. Kammerer M, Brawek B, Freiman TM, Jackisch R and Feuerstein TJ. Effects of antiepileptic drugs on glutamate release from rat and human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:531–42. doi: https://doi.org/10.1007/s00210-011-0620-3

Article Metrics
90 Views 13 Downloads 103 Total

Year

Month

Similar Articles

Related Search

By author names