Suppression of inflammation by Baccharis punctulata and Baccharis trimera through modulation of innate and adaptive immune responses

Christa Burgos Nelson Alvarenga Pablo H. Sotelo Patricia Langjahr   

Open Access   

Published:  Jun 07, 2024

DOI: 10.7324/JAPS.2024.175441
Abstract

Inflammatory processes, involving both innate and adaptive responses, are essential for controlling pathogens and maintaining homeostasis. However, excessive inflammation can cause chronic conditions including autoimmune diseases, atherosclerosis, and cancer. Alternative treatment options for inflammation are crucial, and exploring plants with anti-inflammatory properties holds significance. The genus Baccharis (Asteraceae family) is widespread across the Americas and is traditionally used to treat various disorders, including inflammatory diseases. Several biological activities of Baccharis species have been described; however, their immunomodulatory effects have not been widely evaluated. In this study, we analyzed the immunomodulatory activity of two Baccharis species, Baccharis punctulata, and Baccharis trimera, using an in vitro inflammation model involving monocytic cells and splenocytes to evaluate both innate and adaptive immune responses. Both B. punctulata and B. trimera reduced lipopolysaccharide (LPS)-induced inflammatory mediators, including soluble CD14 and pro-inflammatory cytokines, in THP-1 cells. Furthermore, they suppressed nitric oxide (NO) production in splenocytes, demonstrating a dampened innate immune response. In addition, both species attenuated concanavalin A (ConA)-induced splenocyte proliferation, suggesting an anti-inflammatory effect on the adaptive immune response. In summary, the extracts demonstrated significant anti-inflammatory activity, affecting both innate and adaptive immune responses, and underscoring their potential as treatments for inflammatory diseases and sources of anti-inflammatory molecules.


Keyword:     Baccharis Asteraceae inflammation innate immune response adaptive immune response anti-inflammatory agents medicinal plants


Citation:

Burgos C, Alvarenga N, Sotelo PH, Langjahr P. Suppression of inflammation by Baccharis punctulata and Baccharis trimera through modulation of innate and adaptive immune responses. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.175441

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Ghasemian M, Owlia S, Owlia MB. Review of anti-inflammatory herbal medicines. Adv Pharmacol Sci. 2016;2016:9130979. doi: https://doi.org/10.1155/2016/9130979

2. Kujawska M, Schmeda-Hirschmann G. The use of medicinal plants by Paraguayan migrants in the Atlantic Forest of Misiones, Argentina, is based on Guaraní tradition, colonial and current plant knowledge. J Ethnopharmacol. 2022;283:114702. doi: https://doi.org/10.1016/j.jep.2021.114702

3. Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374(6571):1070–5. doi: https://doi.org/10.1126/science.abi5200

4. Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;30(10):1–13. doi: https://doi.org/10.3389/fimmu.2019.02035

5. Sakai Y, Kobayashi M. Lymphocyte “homing” and chronic inflammation. Pathol Int. 2015;65(7):344–54. doi: https://doi.org/10.1111/pin.12294

6. Rice JB, White AG, Scarpati LM, Wan G, Nelson WW. Long-term systemic corticosteroid exposure: a systematic literature review. Clin Ther [Internet]. 2017;39(11):2216–29. doi: http://dx.doi.org/10.1016/j.clinthera.2017.09.011

7. Ramos Campos F, Bressan J, Godoy Jasinski VC, Zuccolotto T, Da Silva LE, Bonancio Cerqueira L. Baccharis (Asteraceae): chemical constituents and biological activities. Chem Biodivers. 2016;13(1):1–17. doi: https://doi.org/10.1002/cbdv.201400363

8. Abad MJ, Bermejo P. Baccharis (Compositae): a review update. Arkivoc. 2006 Sep 5;2007(7):76–96. doi: http://dx.doi.org/10.3998/ark.5550190.0008.709

9. Pádua B da C, Silva LD, Rossoni JV, Humberto JL, Chaves MM, Silva ME, et al. Antioxidant properties of Baccharis trimera in the neutrophils of Fisher rats. J Ethnopharmacol. 2010;129(3):381–6. doi: https://doi.org/10.1016/j.jep.2010.04.018

10. Gabaglio S, Alvarenga N, Cantero-González G, Degen R, Ferro EA, Langjahr P, et al. A quantitative PCR assay for antiviral activity screening of medicinal plants against Herpes simplex 1. Nat Prod Res. 2021;35(17):2926–30. doi: https://doi.org/10.1080/14786419.2019.1675064

11. Carrizo SL, Zampini IC, Sayago JE, Simirgiotis MJ, Bórquez J, Cuello AS, et al. Antifungal activity of phytotherapeutic preparation of Baccharis species from argentine Puna against clinically relevant fungi. J Ethnopharmacol. 2020;251:112553. doi: https://doi.org/10.1016/j.jep.2020.112553

12. Gené RM, Cartañá C, Adzet T, Marín E, Parella T, Cañigueral S. Anti-inflammatory and analgesic activity of Baccharis trimera: identification of its active constituents. Planta Med. 1996;62(3):232–5. doi: https://doi.org/10.1055/s-2006-957866

13. Nogueira NPA, Reis PA, Laranja GAT, Pinto AC, Aiub CAF, Felzenszwalb I, et al. In vitro and in vivo toxicological evaluation of extract and fractions from Baccharis trimera with anti-inflammatory activity. J Ethnopharmacol. 2011;138(2):513–22. doi: https://doi.org/10.1016/j.jep.2011.09.051

14. Paul EL, Lunardelli A, Caberlon E, De Oliveira CB, Santos RCV, Biolchi V, et al. Anti-inflammatory and immunomodulatory effects of Baccharis trimera aqueous extract on induced pleurisy in rats and lymphoproliferation in vitro. Inflammation. 2009;32(6):419–25. doi: https://doi.org/10.1007/s10753-009-9151-1

15. Bachiega TF, de Sousa JPB, Bastos JK, Sforcin JM. Immunomodulatory/anti-inflammatory effects of Baccharis dracunculifolia leaves. Nat Prod Res. 2013 Sep;27(18):1646–50. doi: https://doi.org/10.1080/14786419.2012.742078

16. Burgos C, Alfonso L, Ferro E, Langjahr P. Immunomodulatory activity of species of the genus Baccharis. Rev Paraguaya Reumatol. 2022;8(1):45–50. doi: https://doi.org/10.18004/rpr/2022.08.01.45

17. de Oliveira CB, Comunello LN, Lunardelli A, Amaral RH, Pires MGS, da Silva GL, et al. Phenolic enriched extract of Baccharis trimera presents anti-inflammatory and antioxidant activities. Molecules. 2012;17(1):1113–23. doi: https://doi.org/10.3390/molecules17011113

18. Ascari J, de Oliveira MS, Nunes DS, Granato D, Scharf DR, Simionatto E, et al. Chemical composition, antioxidant and anti-inflammatory activities of the essential oils from male and female specimens of Baccharis punctulata (Asteraceae). J Ethnopharmacol. 2019;234:1–7. doi: https://doi.org/10.1016/j.jep.2019.01.005

19. Burgos C, Alvarenga N, Heiderich H, Florentín-pavía M, Sotelo PH, Carpinelli MM, et al. Immunomodulatory effects of three species of Baccharis on human peripheral blood mononuclear cells. Trop J Nat Prod. 2021;1055–9. doi: https://doi.org/10.26538/tjnpr/v5i6.12

20. Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W. Current protocols in immunology. Hoboken, NJ: John Wiley and Sons; 1991. Available from: https://www.wiley.com/en-au/Current+Protocols+in+Immunology+-p-9780471522768

21. Ma WT, Gao F, Gu K, Chen DK. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front Immunol. 2019;10:1–24. doi: https://doi.org/10.3389/fimmu.2019.01140

22. Ngkelo A, Meja K, Yeadon M, Adcock I, Kirkham PA. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and G iα dependent PI-3kinase signalling. J Inflamm. 2012;9:2–8. doi: https://doi.org/10.1186/1476-9255-9-1

23. Zanoni I, Granucci F. Role of CD14 in host protection against infections and in metabolism regulation. Front Cell Infect Microbiol. 2013;3(32):1–6. doi: https://doi.org/10.3389/fcimb.2013.00032

24. Chanput W, Mes J, Vreeburg RAM, Savelkoul HFJ, Wichers HJ. Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: A tool to study inflammation modulating effectsof food-derived compounds. Food Funct. 2010;1(3):254–61. doi: https://doi.org/10.1039/c0fo00113a

25. Yamada S, Kotake Y, Demizu Y, Kurihara M, Sekino Y, Kanda Y. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells. Sci Rep. 2014;4:5952. doi: https://doi.org/10.1038/srep05952

26. Wolf K, Schulz C, Riegger GAJ, Pfeifer M. Tumour necrosis factor-α induced CD70 and interleukin-7R mRNA expression in BEAS-2B cells. Eur Respir J. 2002;(2):369–75. doi: https://doi.org/10.1183/09031936.02.00303602

27. Wang H, Yi T, Zheng Y, He S. Induction of monocyte chemoattractant protein-1 release from A549 cells by agonists of protease-activated receptor-1 and -2. Eur J Cell Biol. 2007;86(4):233–42. doi: https://doi.org/10.1016/j.ejcb.2006.12.003

28. Ando Y, Kuroda A, Kusama K, Matsutani T, Matsuda A, Tamura K. Impact of serine protease inhibitor alpha1-antitrypsin on expression of endoplasmic reticulum stress-induced proinflammatory factors in adipocytes. Biochem Biophys Reports. 2021;26:100967. doi: https://doi.org/10.1016/j.bbrep.2021.100967

29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;(4):402–8. doi: https://doi.org/10.1006/meth.2001.1262

30. Stich RW, Shoda LKM, Dreewes M, Adler B, Jungi TW, Brown WC. Stimulation of nitric oxide production in Macrophages by Babesia bovis. Infect Immun. 1998;66 (9):4130–6. doi: https://doi.org/10.1128/IAI.66.9.4130-4136.1998

31. Zhang X, Wang G, Gurley EC, Zhou H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in Macrophages. PLoS One. 2014;9(9):e107072. doi: https://doi.org/10.1371/journal.pone.0107072

32. Gao Y, Liu F, Fang L, Cai R, Zong C, Qi Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR- 101/MKP-1/MAPK pathway in LPS-activated macrophages.PLoS One. 2014;9(5):e96741. doi: https://doi.org/10.1371/journal.pone.0096741

33. Jang G, Lee S, Hong J, Park B, Kim D, Kim C. Anti-inflammatory effect of 4,5-dicaffeoylquinic acid on raw264.7 cells and a rat model of inflammation. Nutrients. 2021;13(10):1–10. doi: https://doi.org/10.3390/nu13103537

34. Zai JA, Khan MR, Mughal ZUN, Khan FS, Soomro N. Phytol anti-oxidative and anti-inflammatory effects in hydrogen peroxide challenged human PMBCs involves NF κ B pathway. Int J Emerg Technol. 2021;12(1):296–303.

35. Carvalho AMS, Heimfarth L, Pereira EWM, Oliveira FS, Menezes IRA, Coutinho HDM, et al. Phytol, a chlorophyll component, produces antihyperalgesic, anti-inflammatory, and antiarthritic effects: possible NFκB pathway involvement and reduced levels of the proinflammatory cytokines TNF-α and IL-6. J Nat Prod. 2020;83(4):1107–17. doi: https://doi.org/10.1021/acs.jnatprod.9b01116

36. Dwyer JM, Johnson C. The use of concanavalin A to study the immunoregulation of human T cells. Clin Exp Immunol. 1981;46(2):237–49.

37. Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125(2):S33–40. doi: https://doi.org/10.1016/j.jaci.2009.09.017

38. Abad MJ, Bessa AL, Ballarin B, Arag O, Gonzales E, Bermejo P. Anti-inflammatory activity of four Bolivian Baccharis species (Compositae). J Ethnopharmacol. 2006;103:338–44. doi: https://doi.org/10.1016/j.jep.2005.08.024

39. Wong VC, Lerner E. Nitric oxide inhibition strategies. Futur Sci OA. 2015;1(1):FSO35. doi: https://doi.org/10.4155/fso.15.35

Article Metrics
112 Views 15 Downloads 127 Total

Year

Month

Related Search

By author names