Bioinspired nanofibers: advancing drug delivery for enhanced therapeutic applications

Amisha S. Raikar Bhavana B. Bhat Sandesh N. Somnache   

Open Access   

Published:  May 17, 2024

DOI: 10.7324/JAPS.2024.182424

Nanomedicine is advancing with bioinspired nanofiber-based drug delivery systems (DDSs). This field explores the use of collagen and spider silk-like nanofibers to transport therapeutic agents to anatomical locations in the system. Nanofibers have a larger surface-area-to-volume ratio, mechanical strength, and ECM-mimicking properties. They are made with organic and artificial polymers, but natural polymers are better for biocompatibility and ECM resemblance. Synthetic polymers are versatile and can be customized to meet specific needs. Various techniques such as electrospinning, self-assembly, and templating are used to make bioinspired nanofibers. Electrospinning creates versatile and robust nanofibers that can be functionalized to boost therapeutic benefits. Control/extended DDSs using nanofibers are attainable by adjusting their physical and chemical properties (e.g., diameter, surface chemistry, and porosity). The nanofiber DDSs inspired by biology have shown promising use in wound healing, cancer therapy, and regenerative medicine. Creating these systems requires achieving biocompatibility, reducing toxicity, maintaining stability, long drug release, scalability, and cost-effectiveness.

Keyword:     Bioinspired nano-fibers electrospinning synthetic nanofibers natural nanofibers extracellular membrane template synthesis


Raikar AS, Bhat BB, Somnache SN. Bioinspired nanofibers: advancing drug delivery for enhanced therapeutic applications. J Appl Pharm Sci. 2024. Online First.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text


1. Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res. 2003;20:810-7.

2. Yang S, Dong H. Modular design and self-assembly of multidomain peptides towards cytocompatible supramolecular cell penetrating nanofibers. RSC Adv. 2020;10(49):29469-74.

3. Williams GR, Chatterton NP, Nazir T, Yu DG, Zhu LM, Branford-White CJ. Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv. 2012;3(4):515-33.

4. Sunoqrot S, Al-Shalabi E, Messersmith PB. Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomater Sci. 2018;6(10), 2656-66.

5. Hay ED. Extracellular matrix. J Cell Nano. 1981;91(3 Pt 2):205s-223s.

6. Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol J Pathol Soc Great Britain Ireland. 2003;200(4):423-8.

7. Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromole. 2020;151:1012-29.

8. Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B. 2018;8(1):34-50.

9. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Progress Heritable Soft Connective Tissue Diseases, 2014;802:31-47.

10. Audelo MLDP, Mendoza-Muñoz N, Escutia-Guadarrama L, Giraldo-Gomez D, González-Torres M, Florán B, et al. Recent advances in elastin-based biomaterial. J Pharm Pharm Sci. 2020;23:314-32.

11. Labat-Robert J, Bihari-Varga M, Robert L. Extracellular matrix. FEBS Lett. 1990;268(2):386-93.

12. Villalba-Rodriguez AM, Parra-Saldivar R, Ahmed I, Karthik K, Malik YS, Dhama K, et al. Bio-inspired biomaterials and their drug delivery perspectives-a review. Current Drug Metab. 2017;18(10):893-904.

13. Yang D, Li Y, Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydrate Polym. 2007;69(3):538-43.

14. Law JX, Liau LL, Saim A, Yang Y, Idrus R. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regen Med. 2017;14:699-718.

15. Aguirre-Chagala YE, Altuzar V, León-Sarabia E, Tinoco-Magaña JC, Yañez-Limón JM, Mendoza-Barrera C. Physicochemical properties of polycaprolactone/collagen/elastin nanofibers fabricated by electrospinning. Mater Sci Eng C. 2017;76:897-907.

16. Du J, Liu J, Yao S, Mao H, Peng J, Sun X, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 2017;55:296-309.

17. Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28(1):142-50.

18. Uppal R, Ramaswamy GN, Arnold C, Goodband R, Wang Y. Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior. J Biomed Mater Res Part B Appl Biomater. 2011;97(1):20-29.

19. Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges. J Control Release. 2020;321:324-47.

20. Edwards A, Jarvis D, Hopkins T, Pixley S, Bhattarai N. Poly (ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J Biomed Mater Res Part B Appl Biomater. 2015;103(1):21-30.

21. Huang ZM, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 2004;45(15):5361-68.

22. Shaghaleh H, Xu X, Wang S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 2018;8(2):825-42.

23. Taemeh MA, Shiravandi A, Korayem MA, Daemi H. abrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym. 2020;228:115419.

24. Rammensee S, Hümmerich D, Hermanson KD, Scheibel T, Bausch AR. Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl Phys A. 2006;82:261-64.

25. Lin X, Wang J, Wu X, Luo Y, Wang Y, Zhao Y. Marine-derived hydrogels for biomedical applications. Adv Funct Mater. 2023;33(6):2211323.

26. Zhao W, Li J, Jin K, Liu W, Qiu X, Li C. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C, 2016;59:1181-94.

27. Saini P, Arora M, Kumar MR. Poly (lactic acid) blends in biomedical applications. Adv Drug Delivery Rev. 2016;107:47-59.

28. Teixeira MA, Amorim MTP, Felgueiras HP. Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers. 2019;12(1):7.

29. Lu JW, Zhu YL, Guo ZX, Hu P, Yu J. Electrospinning of sodium alginate with poly (ethylene oxide). Polymer. 2006;47(23):8026-31.

30. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26(15):2527-36.

31. Bertuoli PT, Ordono J, Armelin E, Perez-Amodio S, Baldissera AF, Ferreira CA, et al. Electrospun conducting and biocompatible uniaxial and Core-Shell fibers having poly (lactic acid), poly (ethylene glycol), and polyaniline for cardiac tissue engineering. ACS Omega. 2019;4(2):3660-72.

32. Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, et al. Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules. 2007;40(17):6283-90.

33. Zhuo H, Hu J, Chen S, Yeung L. Preparation of polyurethane nanofibers by electrospinning. J Appl Polym Sci. 2008;109(1):406-11.

34. He JH, Wan YQ, Yu JY. ffect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers Polym. 2008;9(2):140-42.

35. Van Do C, Nguyen TTT, Park JS. Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics. Solar Energy Mater Solar Cells. 2012;104:131-39.

36. Han J, Branford-White CJ, Zhu LM. Preparation of poly (ε-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning. Carbohydr Polym. 2010;79(1):214-18.

37. Hu J, Kai D, Ye H, Tian L, Ding X, Ramakrishna S, et al. Electrospinning of poly (glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater Sci Eng: C. 2017;70:1089-94.

38. Liu Y, Miao YL, Qin F, Cao C, Yu XL, Wu YH, et al. Electrospun poly (aspartic acid)-modified zein nanofibers for promoting bone regeneration. Int J Nanomed. 2019;9497-12.

39. Liu L, Bai S, Yang H, Li S, Quan J, Zhu L, et al. Controlled release from anofib-sensitive PNVCL-co-MAA electrospun nanofibers: the effects of hydrophilicity/hydrophobicity of a drug. Mater Sci Eng C. 2016;67:581-9.

40. Kitasono S, Yamamoto K, Kadokawa JI. Preparation and gelation behaviors of poly (2-oxazoline)-grafted chitin nanofibers. Carbohydr Polym. 2021;259:117709.

41. Oliveira JE, Moraes EA, Marconcini JM, Mattoso LHC, Glenn GM, Medeiros ES. Properties of poly (lactic acid) and poly (ethylene oxide) solvent polymer mixtures and nanofibers made by solution blow spinning. J Appl Polym Sci. 2013;129(6):3672-81.

42. Yingying M, Xiu-Xia L, Luyun C, Jianrong L. pH-sensitive ε-polylysine/polyaspartic acid/zein nanofiber membranes for the targeted release of polyphenols. Food Funct. 2022;13(12),6792-801.

43. Rahim Labbafzadeh M, Vakili MH. Application of magnetic electrospun polyvinyl alcohol/collagen anofibers for drug delivery systems. Mole Simul. 2022;48(1):1-7.

44. Zhang M, Li Z, Liu L, Sun Z, Ma W, Zhang Z, et al. Preparation and characterization of vancomycin-loaded electrospun rana chensinensis skin collagen/Poly(L-lactide) nanofibers for drug delivery. Khatri Z, editor. Journal of Nanomaterials. 2016 Aug 18;2016:9159364.

45. Huo P, Han X, Zhang W, Zhang J, Kumar P, Liu B. Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics. 2021;13(8):1228.

46. Sasmal P, Datta P. Tranexamic acid-loaded chitosan electrospun nanofibers as drug delivery system for hemorrhage control applications. J Drug Delivery Sci Technol. 2019;52:559-67.

47. Gouda M, Khalaf MM, Shaaban S, El-Lateef HMA. Fabrication of chitosan nanofibers containing some steroidal compounds as a drug delivery system. Polymers. 2022;14(10):2094.

48. Patel PR, Singam A, Iyer AK, Gundloori RVN, Bioinspired hyaluronic acid based nanofibers immobilized with 3, 4- difluorobenzylidene curcumin for treating bacterial infections. J Drug Delivery Sci Technol, 2022;74:103480.

49. Dadras Chomachayi M, Solouk A, Akbari S, Sadeghi D, Mirahmadi F, Mirzadeh H. Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res Part A 2018;106A:1092-103.

50. Guidotti G, Soccio M, Bondi E, Posati T, Sotgiu G, Zamboni R, et al. Effects of the blending ratio on the design of keratin/poly(butylene succinate) nanofibers for drug delivery applications. Biomolecules. 2021;11(8):1194.

51. Meng ZX, Xu XX, Zheng W, Zhou HM, Li L, Zheng YF, et al. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf B Biointerfaces. 2011;84(1):97-102.

52. Aytac Z, Sen HS, Durgun E, Uyar T. Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf B Biointerf. 2015;128:331-38.

53. Najafiasl M, Osfouri S, Azin R, Zaeri S. Alginate-based electrospun core/shell nanofibers containing dexpanthenol: a good candidate for wound dressing, J Drug Deliv Sci Technol, 2020;57:101708, ISSN 1773-2247.

54. Qi R, Guo R, Zheng F, Liu H, Yu J, Shi X. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. Colloids Surf B Biointerf. 2013;110:148-55.

55. Huang X, Guan N, Li Q. A marine-derived anti-inflammatory scaffold for accelerating skin repair in diabetic mice. Marine Drugs. 2021;19(9):496.

56. Mamidi N, Zuníga AE, Villela-Castrejón J. Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. Mater Sci Eng C 112, 2020, 110928, ISSN 0928-4931.

57. Rezaei S, Valipouri A, Hosseini Ravandi SA, Kouhi M, Ghasemi Mobarakeh L. Fabrication, characterization, and drug release study of vitamin C-loaded alginate/polyethylene oxide nanofibers for the treatment of a skin disorder. Polym Adv Technol. 2019;30:2447-57.

58. Grumezescu AM, Stoica AE, Dima-B?lcescu M-?, Chircov C, Gharbia S, Balt? C, et al. Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: novel approach in anti-infective therapy. J Clin Med. 2019;8(7):1039.

59. Minisy IM, Salahuddin NA, Ayad MM. In vitro release study of ketoprofen-loaded chitosan/polyaniline nanofibers. Polym. Bull. 2021;78:5609-22.

60. Pavli?áková V, Fohlerová Z, Pavli?ák D, Khunová V, Vojtová L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater Sci Eng C. 2018;91:94-102. ISSN 0928-4931.

61. Gencturk A, Kahraman E, Güngör S, Özhan G, Özsoy Y, Sarac AS. Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif CellsNanomed Biotechnol. 2017;45(3):655-64.

62. Zhang X, Geven MA, Wang X, Qin L, Grijpma DW, Peijs T, et al. A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. Int J Nanomed. 2018;24(13):5701-18.

63. Rezk AI, Kim K-S, Kim CS. Poly(ε-Caprolactone)/Poly(Glycerol Sebacate) composite nanofibers incorporating hydroxyapatite nanoparticles and simvastatin for bone tissue regeneration and drug delivery applications. Polymers. 2020;12(11):2667.

64. Teo WE, Inai R, Ramakrishna S. Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater. 2011 Feb 16;12(1):013002.

65. Li Z, Wang C. One-dimensional nanostructures: electrospinning technique and unique nanofibers. New York Dordrecht London: Springer Berlin Heidelberg. 2013. pp. 15-29.

66. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12-21.

67. Greiner A, Wendorff JH. Functional self-assembled nanofibers by electrospinning. Self-assembled nanomaterials I: Nanofibers. 2008;168:107-71.

68. Stendahl JC, Rao MS, Guler MO, Stupp SI. Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater. 2006;16(4):499-508.

69. Jiao Q, Liu Z, Li B, Tian B, Zhang N, Liu C, et al. Development of antioxidant and stable conjugated linoleic acid Pickering emulsion with protein nanofibers by microwave-assisted self-assembly. Foods. 2021;10(8):1892.

70. Calahorra Y, Datta A, Famelton J, Kam D, Shoseyov O, Kar-Narayan S. Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers. Nanoscale. 2018;10(35):16812-21.

71. Okesola BO, Mata A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem Soc Rev. 2018;47(10), 3721-36.

72. Li D, Dai F, Li H, Wang C, Shi X, Cheng Y, et al. Chitosan and collagen layer-by-layer assembly modified oriented nanofibers and their biological properties. Carbohydr Polym. 2021;254:117438.

73. Shao J, Chen C, Wang Y, Chen X, Du C. Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process. React Funct Polym. 2012:72(10):765-72.

74. Xie F, Wang Y, Zhuo L, Jia F, Ning D, Lu Z. Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture. ACS Appl Mater Interf. 2020;12(50):56499-508.

75. Tao SL, Desai TA. Aligned arrays of biodegradable poly (?-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett. 2007;7(6):1463-8.

76. Morie A, Garg T, Goyal AK, Rath G. Nanofibers as novel drug carrier-an overview. Artif Cells Nanomed Biotechnol. 2016;44(1):135-43.

77. Karim Haidar M, Eroglu H. Nanofibers: new insights for drug delivery and tissue engineering. Current Topics Med Chem. 2017;17(13):1564-79.

78. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12-21.

79. Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci. 2016;4(6):922-32.

80. Alavi M, Nokhodchi A. Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins. Cellulose. 2022;29(3):1331-47.

81. Sahoo S, Ang LT, Goh JCH, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res Part A Official J Soc Biomater Japanese Soc Biomater Austr Soc Biomater Korean Soc Biomater. 2010;93(4):1539-50.

82. Li J, Liu Y, Abdelhakim HE. Drug delivery applications of coaxial electrospun anofibers in cancer therapy. Molecules. 2022;27(6):1803.

83. Liu X, Xu H, Zhang M, Yu DG. Electrospun medicated nanofibers for wound healing. Membranes. 2021;11(10):770.

84. Mistry P, Chhabra R, Muke S, Narvekar A, Sathaye S, Jain R, et al. Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Mater Sci Eng C. 2021;119:111316.

85. Wang Y, Wang B, Qiao W, Yin T. A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles. J Pharm Sci. 2010;99(12):4805-11.

86. Lee CH, Liu KS, Roth JG, Hung KC, Liu YW, Wang SH, et al. Telmisartan loaded nanofibers enhance re-endothelialization and inhibit neointimal hyperplasia. Pharm., 2021;13(11):1756.

87. Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. Adv Funct Mater. 2020;30(37):1910811.

88. Kuraishi K, Iwata H, Nakano S, Kubota S, Tonami H, Toda M, et al. Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments. J Biomed Mater Res Part B Appl Biomater Official J Soc Biomater, Japn Soc Biomater Austr Soc Biomater Korean Soc Biomater. 2009;88(1):230-39.

89. Kumar N, Sridharan D, Palaniappan A, Dougherty JA, Czirok A, Isai DG. et al. Scalable biomimetic coaxial aligned nanofiber cardiac patch: a potential model for "Clinical Trials in a Dish". Front Bioeng Biotechnol. 2020;8:567842.

90. Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Hu DP, Christman, KL. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering Part A, 2010;16(6):2017-27.

91. Ye G, Wen Z, Wen F, Song X, Wang L, Li C, et al. Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction. Theranostics 2020;10(5):2047.

92. Walker BW, Lara RP, Yu CH, Sani ES, Kimball W, Joyce S, et al. Engineering a naturally-derived adhesive and conductive cardiopatch. Biomaterials. 2019;207:89-101.

93. Coelho D, Veleirinho B, Mazzarino L, Alberti T, Buzanello E, Oliveira RE, et al. Polyvinyl alcohol-based electrospun matrix as a delivery system for nanoemulsion containing chalcone against Leishmania (Leishmania) amazonensis. Colloids Surf B Biointerf. 2021;198:111390.

Article Metrics
37 Views 9 Downloads 46 Total



Related Search

By author names