An overview on clinical studies of Morus species with bioactivities of compounds providing supporting evidence

Eric Wei Chiang Chan   

Open Access   

Published:  May 07, 2024

DOI: 10.7324/JAPS.2024.184245
Abstract

Morus of the family Moraceae is a small plant genus having 19 species worldwide. Among the Morus species, M. alba (MA), M. indica, M. nigra, and M. rubra are economically important. Of these species, the medicinal values of the whole plant, leaf, fruit, twig, and root of MA are the most well-known. Most noteworthy are the anti-diabetic properties of MA. In this review, 23 clinical studies on anti-diabetic properties (5 in Japan) and 9 clinical studies on other pharmacological properties (4 in Thailand) of Morus species are described. The latter includes hypolipidemic, cognitive enhancement, coronary heart disease attenuation, anti-obesity, and climacteric improvement. Further studies on the molecular mechanisms of mulberry compounds, and their safety, distribution, absorption, metabolism, and excretion are needed.


Keyword:     Morus alba M. indica M. nigra mulberry anti-diabetic 1-deoxynojirimycin


Citation:

Chan EWC. An overview on clinical studies of Morus species with bioactivities of compounds providing supporting evidence. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.184245

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Ozturk M, Kamili AN, Altay V, Rohela GK. Mulberry: from botany to phytochemistry. New York, NY: Springer International Publication AG; 2023. 191 pp.

2. Wu Z, Zhou ZK, Gilbert MG. Moraceae. Flora China. 2003;5:22−6.

3. Lim TK. Morus alba. In: edible, medicinal and non-medicinal plants: volume 3, Fruits. New York, NY: Science + Business Media B.V.; 2011. pp 399−429. doi: https://doi.org/10.1007/978-94-007-2534-8_56

4. Chan EWC, Lye PY, Wong SK. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med. 2016;14(1):17−30. doi: https://doi.org/10.3724/SP.J.1009.2016.00017

5. Batiha GE, Al-Snafi AE, Thuwaini MM, Teibo JO, Shaheen HM, Akomolafe AP, et al. Morus alba: a comprehensive phytochemical and pharmacological review. Naunyn-Schmiedeberg Arch Pharmacol. 2023;396:1399−413. doi: https://doi.org/10.1007/s002 10-023-02434-4

6. Chen C, Mohamad Razali UH, Saikim FH, Mahyudin A, Mohd Noor NQ. Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient. Foods. 2021;10(3):689−717.

https://doi.org/10.3390/foods10030689

7. Tang C, Bao T, Zhang Q, Qi H, Huang Y, Zhang B, et al. Clinical potential and mechanistic insights of mulberry (Morus alba L.) leaves in managing type 2 diabetes mellitus: focusing on gut microbiota, inflammation, and metabolism. J Ethnopharmacol. 2023:116143. doi: https://doi.org/10.1016/j.jep.2023.116143

8. Thaipitakwong T, Numhom S, Aramwit P. Mulberry leaves and their potential effects against cardiometabolic risks: a review of chemical compositions, biological properties and clinical efficacy. Pharm Biol. 2018;56(1):109−18. doi: https://doi.org/10.1080/13880209.2018.1424210

9. Chan EWC, Chan HT, Wong SK. An overview of chemical constituents, medicinal properties, clinical trials, and patents of twigs of Morus alba (Ramulus Mori). World J Chin Tradit Med (In Press). doi: https://doi.org/10.4103/2311-8571.393789

10. Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, et al. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of post-prandial blood glucose in humans. J Agric Food Chem. 2007;55(14):5869−74. doi: https://doi.org/10.1021/jf062680g

11. Mudra M, Ercan-Fang N, Zhong L, Furne J, Levitt M. Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diabetes Care. 2007;30(5):1272−4. doi: https://doi.org/10.2337/dc06-2120

12. Nakamura M, Nakamura S, Oku T. Suppressive response of confections containing the extractive from leaves of Morus alba on postprandial blood glucose and insulin in healthy human subjects. Nutr Metabol. 2009;6(1):1−10. doi: https://doi.org/10.1186/1743-7075-6-29

13. Asai A, Nakagawa K, Higuchi O, Kimura T, Kojima Y, Kariya J, et al. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on post-prandial glycemic control in subjects with impaired glucose metabolism. J Diabetes Investig. 2011;2(4):318−23. doi: https://doi.org/10.1111/j.2040-1124.2011.00101.x

14. Nakamura S, Hashiguchi M, Yamaguchi Y. Hypoglycemic effect of Morus alba leaf extract on post-prandial blood glucose and insulin levels in patients with type 2 diabetes treated with sulfonylurea hypoglycemic agents. J Diabetes Metab. 2011;2(9):1−6. doi: https://doi.org/10.4172/2155-6156.1000158

15. Chung HI, Kim J, Kim JY, Kwon O. Acute intake of mulberry leaf aqueous extract affects post-prandial glucose response after maltose loading: randomized double-blind placebo-controlled pilot study. J Funct Food. 2013;5(3):1502−6. doi: https://doi.org/10.1016/j.jff.2013.04.015

16. Banu S, Jabir NR, Manjunath NC, Khan MS, Ashraf GM, Kamal MA, et al. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J Biol Sci. 2015;22(1):32−6. doi: https://doi.org/10.1016/j.sjbs.2014.04.005

17. Kim JY, Ok HM, Kim J, Park SW, Kwon SW, Kwon O. Mulberry leaf extract improves postprandial glucose response in prediabetic subjects: a randomized, double-blind placebo-controlled trial. J Med Food. 2015;18(3):306−13. doi: https://doi.org/10.1089/jmf.2014.3160

18. Hwang SH, Li HM, Lim SS, Wang Z, Hong JS, Huang B. Evaluation of a standardized extract from Morus alba against α-glucosidase inhibitory effect and post-prandial anti-hyperglycemic in patients with impaired glucose tolerance: a randomized double-blind clinical trial. Evid-Based Complement Altern Med. 2016;2016:8983232. doi: https://doi.org/10.1155/2016/8983232

19. Li M, Huang X, Ye H, Chen Y, Yu J, Yang J, et al. Randomized, double-blinded, double-dummy, active-controlled, and multiple-dose clinical study comparing the efficacy and safety of mulberry twig (Ramulus Mori, Sangzhi) alkaloid tablet and acarbose in individuals with type 2 diabetes mellitus. Evid-Based Complement Altern Med. 2016;2016:7121356. doi: https://doi.org/10.1155/2016/7121356

20. Józefczuk J, Malikowska K, Glapa A, Stawi?ska-Witoszy?ska B, Nowak JK, Bajerska J, et al. Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects—a randomized, placebo-controlled, cross-over study. Adv Med Sci. 2017;62(2):302−6. doi: https://doi.org/10.1016/j.advms.2017.03.002

21. Kishnani P, Tarnopolsky M, Roberts M, Sivakumar K, Dasouki M, Dimachkie MM, et al. Duvoglustat HCl increases systemic and tissue exposure of active acid α-glucosidase in Pompe patients co-administered with alglucosidase α. Mol Ther. 2017;25(5):1199−208. doi: https://doi.org/10.1016/j.ymthe.2017.02.017

22. Lown M, Fuller R, Lightowler H, FraserA, Gallagher A, Stuart B, et al. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normo-glycaemic adults: results of a randomised double-blind placebo-controlled study. PLoS One. 2017;12(2):e0172239. doi: https://doi.org/10.1371/journal.pone.0172239

23. Riche DM, Riche KD, East HE, Barrett EK, May WL. Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): a randomized, placebo-controlled pilot study. Complement Ther Med. 2017;32:105−8. doi: https://doi.org/10.1016/j.ctim.2017.04.006

24. Wang R, Li Y, Mu W, Li Z, Sun J, Wang B, et al. Mulberry leaf extract reduces the glycemic indexes of four common dietary carbohydrates. Medicine. 2018;97(34):e11996. doi: https://doi.org/10.1097/MD.0000000000011996

25. Mela DJ, Cao XZ, Dobriyal R, Fowler MI, Lin L, Joshi M, et al. The effect of 8 plant extracts and combinations on post-prandial blood glucose and insulin responses in healthy adults: a randomized controlled trial. Nutr Metabol. 2020;17(51):1−12. doi: https://doi.org/10.1186/s12986-020-00471-x

26. Momeni H, Salehi A, Absalan A, Akbari M. Hydro-alcoholic extract of Morus nigra reduces fasting blood glucose and HbA1c% in diabetic patients, probably via competitive and allosteric interaction with alpha-glucosidase enzyme; a clinical trial and in silico analysis. J Complement Integr Med. 2021;19(3):763−9. doi: https://doi.org/10.1515/jcim-2021-0005

27. Thondre PS, Lightowler H, Ahlstrom L, Gallagher A. Mulberry leaf extract improves glycaemic response and insulinaemic response to sucrose in healthy subjects: results of a randomized, double blind, placebo-controlled study. Nutr Metab. 2021;18(1):1−9. doi: https://doi.org/10.1186/s12986-021-00571-2

28. Fongsodsri K, Thaipitakwong T, Rujimongkon K, Kanjanapruthipong T, Ampawong S, Reamtong O, et al. Mulberry-derived 1-deoxynojirimycin prevents type 2 diabetes mellitus progression via modulation of retinol-binding protein 4 and haptoglobin. Nutrients. 2022;14(21):4538. doi: https://doi.org/10.3390/nu14214538

29. Mela DJ, Cao XZ, Govindaiah S, Hiemstra H, Kalathil R, Lin L, et al. Dose-response efficacy of mulberry fruit extract for reducing post-prandial blood glucose and insulin responses: randomized trial evidence in healthy adults. Br J Nutr. 2022;11:1−24. doi: https://doi.org/10.1017/S0007114522000824

30. Qu L, Liang XC, Tian GQ, Zhang GL, Wu QL, Huang XM, et al. Efficacy and safety of mulberry twig alkaloids tablet for treatment of type 2 diabetes: a randomized, double-blind, placebo-controlled multi-centre clinical study. Chin J Integr Med. 2022;28(4):304−11. doi: https://doi.org/10.2337/dc20-2109

31. Taghizadeh M, Zadeh AM, Asemi Z, Farrokhnezhad AH, Memarzadeh MR, Banikazemi Z, et al. Morus alba leaf extract affects metabolic profiles, biomarkers inflammation and oxidative stress in patients with type 2 diabetes mellitus: a double-blind clinical trial. Clin Nutr. 2022;49:68−73. doi: https://doi.org/10.1016/j.clnesp.2022.03.027

32. Takahashi M, Mineshita Y, Yamagami J, Wang C, Fujihira K, Tahara Y, et al. Effects of the timing of acute mulberry leaf extract intake on postprandial glucose metabolism in healthy adults: a randomised, placebo-controlled, double-blind study. Eur J Clin Nutr. 2023:1−6. doi: https://doi.org/10.1038/s41430-023-01259-x

33. Andallu B, Suryakantham V, Srikanthi BL, Reddy GK. Effect of mulberry (Morus indica L.) therapy on plasma and erythrocyte membrane lipids in patients with type 2 diabetes. Clin Chim Acta. 2001;314:47−53. doi: https://doi.org/10.1016/S0009-8981(01)00632-5

34. Kojima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, et al. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J Clin Biochem Nutr. 2010;47(2):155−61. doi: https://doi.org/10.3164/jcbn.10-53

35. Aramwit P, Petcharat K, Supasyndh O. Efficacy of mulberry leaf tablets in patients with mild dyslipidemia. Phytother Res. 2011;25:365−9. doi: https://doi.org/10.1002/ptr.3270

36. Wattanathorn J, Tong-un T, Muchimapura S, Wannanon P, Thukhammee W, Anulukanapakorn K, et al. Evaluation of safety and cognitive enhancing effect of Morus alba leaves extract in healthy older adults. PharmaNutrition. 2014;2(3):102. doi: https://doi.org/10.1016/j.phanu.2013.11.076

37. Thukham-Mee W, Wattanathorn J, Kirisattayakul W, Wannanon P. Effect of single administration of mulberry milk on the cognitive function of 6–12-year-old children: results from a randomized, placebo-controlled, crossover study. Oxid Med Cell Longev. 2020;2020:6123759. doi: https://doi.org/10.1155/2020/6123759

38. Ma Y, Lv W, Gu Y, Yu S. 1-Deoxynojirimycin in mulberry (Morus indica L.) leaves ameliorates stable angina pectoris in patients with coronary heart disease by improving antioxidant and anti-inflammatory capacities. Front Pharmacol. 2019;10:569−78. doi: https://doi.org/10.3389/fphar.2019.00569

39. Wang Y, Yu Z, Jiang J, Li Y, Yu S. Mulberry leaf attenuates atherosclerotic lesions in patients with coronary heart disease possibly via 1-deoxynojirimycin: a placebo- controlled, double-blind clinical trial. J Food Biochem. 2021;45(1):e13573. doi: https://doi.org/10.1111/jfbc.13573

40. Thaipitakwong T, Supasyndh O, Rasmi Y, Aramwit P. A randomized controlled study of dose-finding, efficacy, and safety of mulberry leaves on glycemic profiles in obese persons with borderline diabetes. Complement Ther Med. 2020;49:102292. doi: https://doi.org/10.1016/j.ctim.2019.102292

41. Costa JP, Brito HO, Galvão-Moreira LV, Brito LG, Costa-Paiva L, Brito LM. Randomized double-blind placebo-controlled trial of the effect of Morus nigra L. (black mulberry) leaf powder on symptoms and quality of life among climacteric women. Int J Gynecol Obstet. 2020;148(2):243−52. doi: https://doi.org/10.1002/ijgo.13057

42. Hunyadi A, Martins A, Hsieh TJ, Seres A, Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS One. 2012;7(11):e50619. doi: https://doi.org/10.1371/journal.pone.0050619

43. Li HX, Jo E, Myung CS, Kim YH, Yang SY. Lipolytic effect of compounds isolated from leaves of mulberry (Morus alba L.) in 3T3-L1 adipocytes. Nat Prod Res. 2018;32(16):1963−6. doi: https://doi.org/10.1080/14786419.2017.1354190

44. Zhang M, Chen M, Zhang HQ, Sun S, Xia B, Wu FH. In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia. 2009;80(8):475−7. doi: https://doi.org/10.1016/j.fitote.2009.06.009

45. Lim SH, Yu JS, Lee HS, Choi CI, Kim KH. Antidiabetic flavonoids from fruits of Morus alba promoting insulin-stimulated glucose uptake via Akt and AMP-activated protein kinase activation in 3T3-L1 adipocytes. Pharmaceutics. 2021;13(4):526.

https://doi.org/10.3390/pharmaceutics13040526

46. Zhang Y, Ren C, Lu G, Cui W, Mu Z, Gao H, et al. Purification, characterization and anti-diabetic activity of a polysaccharide from mulberry leaf. Regul Toxicol Pharmacol. 2014;70(3):687−95. doi: https://doi.org/10.1016/j.yrtph.2014.10.006

47. Hu TG, Wen P, Shen WZ, Liu F, Li Q, Li EN, et al. Effect of 1-deoxynojirimycin isolated from mulberry leaves on glucose metabolism and gut microbiota in a streptozotocin-induced diabetic mouse model. J Nat Prod. 2019;82(8):2189−200. doi: https://doi.org/10.1021/acs.jnatprod.9b00205

48. Ramappa VK, Srivastava D, Singh P, Kumar U, Singh V. Mulberry 1-deoxynojirimycin (DNJ): an exemplary compound for therapeutics. J Hortic Sci Biotechnol. 2020;95(6):679−86. doi: https://doi.org/10.1080/14620316.2020.1760738

49. Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem Toxicol. 2014;65:213−8.

https://doi.org/10.1016/j.fct.2013.12.040

50. Yang Y, Yang X, Xu B, Zeng G, Tan J, He X, et al. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia. 2014;98:222−7. doi: https://doi.org/10.1016/j.fitote.2014.08.010

51. Choi JW, Synytsya A, Capek P, Bleha R, Pohl R, Park YI. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Carbohydr Polym. 2016;146:187−96. doi: https://doi.org/10.1016/j.carbpol.2016.03.043

52. Kuk EB, Jo AR, Oh SI, Sohn HS, Seong SH, Roy A, et al. Anti-Alzheimer’s disease activity of compounds from the root bark of Morus alba L. Arch Pharm Res. 2017;40:338−49. doi: https://doi.org/10.1007/s12272-017-0891-4

53. Seong SH, Ha MT, Min BS, Jung HA, Choi JS. Moracin derivatives from morus radix as dual BACE1 and cholinesterase inhibitors with antioxidant and anti-glycation capacities. Life Sci. 2018;210:20−8. doi: https://doi.org/10.1016/j.lfs.2018.08.060

54. Awerbach JD, Krasuski RA, Camitta MG. Coronary disease and modifying cardiovascular risk in adult congenital heart disease patients: should general guidelines apply? Prog Cardiovasc Dis. 2018;61:300−7. doi: https://doi.org/10.1016/j.pcad.2018.07.018

55. Wirtz PH, von Känel R. Psychological stress, inflammation, and coronary heart disease. Curr Cardiol Rep. 2017;19:111−21. doi: https://doi.org/10.1007/s11886-017-0919-x

56. Cao H, Ji W, Liu Q, Li C, Huan Y, Lei L, et al. Morus alba L. (Sangzhi) alkaloids (SZ-A) exert anti-inflammatory effects via regulation of MAPK signaling in macrophages. J Ethnopharmacol. 2021;280:114483. doi: https://doi.org/10.1016/j.jep.2021.114483

57. Chen YC, Tien YJ, Chen CH, Beltran FN, Amor EC, Wang RJ, et al. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complement Altern Med. 2013;13(45):1−10. doi: https://doi.org/10.1186/1472-6882-13-45

58. Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH, et al. In vitro and in vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. J Pharm Pharmacol. 2003;55(12):1695−700. doi: https://doi.org/10.1211/0022357022313

59. Wei J, Chen JR, Pais EM, Wang TY, Miao L, Li L, et al. Oxyresveratrol is a phytoestrogen exerting anti-inflammatory effects through NF-κB and estrogen receptor signaling. Inflammation. 2017;40:1285−96. doi: https://doi.org/10.1007/s10753-017-0572-y

60. Likhitwitayawuid K. Oxyresveratrol: sources, productions, biological activities, pharmacokinetics, and delivery systems. Molecules. 2021;26(14):4212. doi: https://doi.org/10.3390/molecules26144212

61. Enkhmaa B, Shiwaku K, Katsube T, Kitajima K, Anuurad E, Yamasaki M, et al. Mulberry (Morus alba L.) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. J Nutr. 2005;135(4):729−34. doi: https://doi.org/10.1093/jn/135.4.729

62. Tran HNK, Kim JA, Rho SS, Woo MH, Choi JS, Lee JH, et al. Anti-inflammatory activities of compounds from twigs of Morus alba. Fitoterapia. 2017;120:17−24. doi: https://doi.org/10.1016/j.fitote.2017.05.004

63. Zelova? H, Hana?kova? Z, C?erma?kova? Z, S?mejkal K, Dall? Acqua S, Babula P, et al. Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus alba and Morus nigra. J Nat Prod. 2014;77(6):1297−303. doi: https://doi.org/10.1021/ np401025f

64. Wu YX, Kim YJ, Kwon TH, Tan CP, Son KH, Kim T. Anti-inflammatory effects of mulberry (Morus alba L.) root bark and its active compounds. Nat Prod Res. 2020;34(12):1786−90. doi: https://doi.org/10.1080/14786419.2018.1527832

Article Metrics
34 Views 7 Downloads 41 Total

Year

Month

Related Search

By author names