INTRODUCTION

Morus of the family Moraceae is a small plant genus having 19 species worldwide [1]. Economically important species are *Morus alba* (white mulberry), *M. indica* (MI, Indian mulberry), *Morus nigra* (MN, black mulberry), and *Morus rubra* (red mulberry). China has 11 *Morus* species of which 5 are endemic and 1 is introduced [2].

Morus alba L., comprising *M. alba* var. *alba* and *M. alba* var. *multicaulis*, is a fast-growing monoecious and deciduous shrub or medium-sized tree without buttress [2−5]. Young plants produce multiple stems via coppicing. The bark is brownish–gray with vertical fissures, lenticels, and white or cream-colored latex. Leaves of *M. alba* (MA) are glossy green, alternately arranged, cordate at the base, and acuminate at the apex. Leaf margins are serrated, leaf petioles are long and slender, and leaf blades vary from unlobed to almost palmate. Fruits are drupes or sorosis that are white when young, turning reddish when mature, and black when ripe [2−5]. Leaves, twigs, and maturing fruits of MA are shown in Figure 1.

The whole plant, leaf, fruit, twig, and root of MA have medicinal values. Chemical constituents comprise steroids, tannins, phytosterols, glycosides, alkaloids, carbohydrates, proteins, and amino acids, as well as saponins, triterpenes, flavonoids, benzofurans, anthocyanins, polysaccharides, anthraquinones, and glycosides [5−7]. Pharmacological properties include antioxidant, antimicrobial, anti-inflammatory, anti-diabetic, hypolipidemic, anti-obesity, and cardioprotective [5−7]. The beneficial effects of MA leave against cardiometabolic risks have been reviewed [8]. The chemical constituents, medicinal properties, clinical trials, and patents of twigs of MA (Ramulus Mori) have recently been reviewed [9].

In this review, the clinical studies of *Morus* species (mostly MA) to date are briefly described. These studies are categorized as anti-diabetic properties (2007−2022) and other pharmacological properties (2001−2021) in chronological order. Relevant to the findings of these studies are mention of compounds, their classes, and bioactivities.

CLINICAL STUDIES

Anti-diabetic properties

There are 23 clinical studies on anti-diabetic properties of *Morus* species (Table 1). Five studies were undertaken in...
Japan; three studies each in the USA, Korea, China, and India; and two studies each in Iran and the UK. Single studies were conducted in Thailand and Poland. All studies were on MA except one study on MN. Plant parts of MA clinically tested were mostly leaves with fruits and twigs lesser studied.

OTHER PHARMACOLOGICAL PROPERTIES

There are nine clinical studies on other pharmacological properties of *Morus* species (Table 2). Four studies were undertaken in Thailand, two studies in China, and single studies were conducted in Japan, India, and Brazil. One study was tested on MN and MI each. Clinical studies on other pharmacological properties of *Morus* species include hypolipidemic (3), cognitive enhancement (2), coronary heart disease (CHD) attenuation (2), anti-obesity (1), and climacteric improvement (1).

BIOACTIVE COMPOUNDS

Anti-diabetic

Compounds in MA leaves, fruits, and twigs with anti-diabetic activities include 1-deoxynojirimycin (DNJ), quercetin, dihydroquercetin kaempferol, rutin, chlorogenic acid chalcomoracin, morachalcone, and isobavachalcone [6,42,43]. Steppogenin-4′-O-β-D-glucoside and mulberroside A from the root bark of MA significantly reduced the fasting blood glucose level in alloxan-induced diabetic mice [44]. Rutin and quercetin-3-O-β-D-glucoside, two anti-diabetic flavonoids from the fruit of MA, improved glucose uptake in 3T3-L1 cells.

Table 1. Clinical studies on anti-diabetic properties of *Morus* species.

<table>
<thead>
<tr>
<th>Description of clinical study</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Tohoku University, Sendai, Japan, an MA leaf powder rich in DNJ (1.5%) was clinically tested to determine the optimal dose to suppress PPG. Results showed that a dose of 0.8 and 1.2 g of the leaf powder significantly reduced PPG and secretion of insulin after 30–180 minutes.</td>
<td>[10]</td>
</tr>
<tr>
<td>In Minneapolis Medical Center, USA, the hypoglycemic effects of MLE were tested on healthy and T2D subjects. Changes in the blood glucose of subjects were monitored after ingesting 75 g sucrose in 500 ml of water with 1.0 g of MLE or placebo. Results showed that after 2 hours there was a significant difference in the blood glucose level between MLE and placebo for the control and diabetic groups. The decrease in glucose for MLE and placebo was 15 and 22 mg/dl for the control group, and 42 and 54 mg/dl for the T2D group.</td>
<td>[11]</td>
</tr>
<tr>
<td>The suppressive ability of confections containing MLE on PPG and PPI in healthy subjects was tested at Siebold University of Nagasaki, Japan. Healthy females participated in the clinical study. Daifuku-mochi, Mizu-yokan, and chiffon cake were ingested by each subject. The confections with a 10:1 ratio of MLE to sucrose were found to effectively suppress the PPG and PPI, by inhibiting the intestinal sucrase, suggesting its prebiotic effect.</td>
<td>[12]</td>
</tr>
<tr>
<td>At Nippon Medical School, Tokyo, Japan, the effect of DNJ-rich MLE on PPH was assessed in subjects having impaired glucose metabolism. Ingestion of MLE attenuated acute glycemia. After 12 weeks, the serum 1,5-AG in the extract group was significantly higher than in the placebo group.</td>
<td>[13]</td>
</tr>
<tr>
<td>Conducted at the Miharadai Hospital in Nagasaki, Japan, the study was attended by 10 patients with T2D and 10 healthy subjects. Results affirmed that PPG and PPI levels in T2D patients treated with sulfonylurea were significantly suppressed after ingestion of jelly containing 3.3 g of MLE.</td>
<td>[14]</td>
</tr>
<tr>
<td>At Ewha Woman’s University, Seoul, Korea, a clinical study investigated the intake dosage of aqueous MLE (DNJ 3.6 mg/g) and the time necessary to reduce PPG levels after intake of 75 g maltose by 50 healthy subjects. Results showed that the ingestion of 2.5 or 5.0 g of MLE leaf extract at 30 and 60 minutes was necessary to suppress glucose levels in healthy subjects.</td>
<td>[15]</td>
</tr>
<tr>
<td>Research on the effect of mulberry tea in reducing PPG levels in T2D patients was conducted at Sri Jayadeva Institute of Cardiovascular Sciences and Research in Bangalore, India. A total of 20 diabetic patients consumed plain tea as control and 28 diabetic patients consumed mulberry tea as treatment. FBG was monitored after a standard breakfast. The PPG levels of all 48 patients were recorded 90 minutes after the consumption of 70 ml of tea with one teaspoon of sugar added. In the control and test groups, FBG levels were 179 and 154, and PPG values were 287 and 210, respectively. A highly significant reduction in the PPG level was observed in patients who consumed the mulberry tea compared with patients who consumed the plain tea.</td>
<td>[16]</td>
</tr>
<tr>
<td>Another clinical study conducted at the Department of Food Science and Technology, Seoul National University, Korea, showed that DNJ-enriched MLE improved PPG response in pre-diabetic subjects. With supplementation of 5 g/day of extract for 4 weeks, subjects exhibited significantly improved post-prandial glycemic control. The MLE has been standardized to contain 3.6 mg/g of DNJ. The α-glucosidase inhibitory and post-prandial hypoglycemic effects of a standardized MLE were tested on 46 patients with IGT at Hallym University Hospital, Chuncheon, Korea. The randomized double-blind clinical trial investigated the α-glucosidase inhibition in patients with IGT. The inhibitory effects of rice coated with MLE (12 mg/100 g rice) were evaluated in a group of IGT patients and another group of normal persons towards PPG. Results showed that MLE had significant inhibition towards PPH in both groups.</td>
<td>[18]</td>
</tr>
<tr>
<td>The efficacy and safety of MA twig alkaloids for the treatment of T2D were assessed by the clinical study undertaken at Peking University First Hospital, Beijing, China. A total of 200 patients were divided equally into the MA twig alkaloid group or placebo group for a duration of 16 weeks. At week 16, the decline in HbA1c was 0.8% for the RM alkaloid group and 0.1% for the placebo group. Values in FBG and PBG are also significantly different.</td>
<td>[19]</td>
</tr>
</tbody>
</table>

Continued
Description of clinical study

<table>
<thead>
<tr>
<th>Clinical Study</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>This crossover and single-blind clinical study investigated the effect of MLE on the digestion and absorption of starch in 25 healthy subjects. For each subject, a 13C-starch breath test was performed twice. Subjects ingested 13C-abundant cornflakes either with the MLE (36 mg DNJ) or the placebo. A week later, each subject was given the opposite preparation. The overall dose recovery in percent was lower for the MLE test than for the placebo test. A significant decrease was detected 2 hours after the ingestion. A single dose of MLE, taken with a test meal, reduces starch digestion and absorption. This study was conducted at Poznan University of Medical Sciences in Poland.</td>
<td>[20]</td>
</tr>
<tr>
<td>At Duke University Medical Center, Durham, North Carolina, USA, a clinical study evaluated the effects of four doses of DH or DNJ on the pharmacokinetics and tissue levels of GAA (20 mg/kg) in 25 PD patients. AA alone resulted in an increase in total GAA and PP. When co-administered with DH, total GAA, and PP were further increased by 1.2- to 2.8-fold. Muscle GAA also increased.</td>
<td>[21]</td>
</tr>
<tr>
<td>Conducted at the Functional Food Centre, Oxford Brooks University, UK, a clinical study determined the effect of Reducose on healthy adults. The blood glucose and insulin responses when co-administered with 50 g maltodextrin of subjects given three doses of Reducose, a standardized MLE containing 5.0% of DNJ, in comparison with the placebo group. The MLE was found to significantly reduce total blood glucose and total insulin 120 minutes after ingestion of maltodextrin.</td>
<td>[22]</td>
</tr>
<tr>
<td>This randomized and double-blind clinical study at the University of Mississippi Medical Center, Jackson, USA, evaluated the hypoglycemic effect of a standardized MLE versus placebo given three times daily with meals. Subjects were patients with T2D and stable HbA1c. After 3 months, PPG was significantly decreased (16%) in the MLE group. There was no difference in HbA1c between the MLE and the placebo groups.</td>
<td>[23]</td>
</tr>
<tr>
<td>At Second Affiliated Hospital, Tianjin University, China, a clinical study investigated the effects of MLE on the GI of common dietary carbohydrates ingested by healthy volunteers. They were given 50 g of carbohydrate powder with or without 750 mg of MLE (7.5 mg of DNJ) dissolved in 150 ml of drinking water. Results showed that the consumption of MLE with sucrose, maltose, or maltodextrin can reduce their GI values.</td>
<td>[24]</td>
</tr>
<tr>
<td>A randomized controlled trial was conducted in Lambda Therapeutics Research Ltd. in Ahmedabad, India, to assess the effect of MA extracts on PPG and PPI responses in 72 healthy adults. MFE (1.5 g) and MLE (1.0 g) yielded a significant decline in PPG and PPI after 2 hours.</td>
<td>[25]</td>
</tr>
<tr>
<td>A clinical study at Khomein University of Medical Sciences, Iran, evaluated the effects of aqueous ethanol leaf extract of MN on FBG and HbA1c in diabetic patients. Patients in the treatment and control groups were given 3.0 ml extract or placebo three times a day. After 3 months, both FBG and HbA1c were significantly reduced in patients of the treatment group. This clinical trial showed that the MN leaf extract is effective in reducing blood glucose and HbA1c in diabetic patients.</td>
<td>[26]</td>
</tr>
<tr>
<td>This clinical study, conducted at the Oxford Brookes Centre for Nutrition and Health, UK, investigated the effects of Reducose (a standardized MLE with 4.5%–5.5% DNJ) on glycemic and insulimic responses to 75 g sucrose in healthy subjects. Results showed that the addition of Reducose to sucrose resulted in significantly lower glycaemic and insulimic responses compared to sucrose alone (placebo).</td>
<td>[27]</td>
</tr>
<tr>
<td>A clinical study performed at the Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, found that long-term (12 weeks) supplementation of DNJ-enriched MLE prevented the progression of diabetes in obese people with prediabetes or with early-stage diabetes by improving PPH, FPG, and HbA1c.</td>
<td>[28]</td>
</tr>
<tr>
<td>Two clinical trials were carried out at Lambda Therapeutics Research Ltd., Ahmedabad, India, to assess the efficacy of MFE for reducing PPG and PPI in healthy adults. Trial 1 used MFE in boiled rice, and MFE in rice porridge. MFE significantly decreased PPG by 23%–27% and PPI by 14%–35%. Trial 2 used MFE in boiled rice. MFE (0.37 g) significantly reduced PPG by 20% and PPI by 17%. These two trials showed that MFE in low doses can reduce PPG and PPI responses to meals rich in carbohydrates.</td>
<td>[29]</td>
</tr>
<tr>
<td>At Medical College Hospital and Peking Union Medical College, Beijing, China, a randomized, double-blind, and multi-center clinical trial was conducted to assess the efficacy of mulberry twig alkaloids for the treatment of T2D. HbA1c at week 16 was reduced by 0.8% in the treatment group and 0.1% in the placebo group.</td>
<td>[30]</td>
</tr>
<tr>
<td>This study, performed at Kashan University of Medical Sciences, Iran, was a randomized, double-blind, placebo-controlled trial, that involved 60 patients with T2D. The subjects were divided into 2 groups, receiving either MA extract (300 mg) or a placebo twice a day. Fasting blood samples were collected after 12 weeks. The extract group displayed a significant decrease in insulin and MDA, and a significant increase in HDL cholesterol.</td>
<td>[31]</td>
</tr>
<tr>
<td>At the Tokyo Institute of Technology, Japan, a randomized and double-blind clinical trial investigated the timing effects of MLE intake on PPG levels in young adults. 12 young adults participated and underwent 4 treatments, i.e., morning and evening placebo, and morning and evening MLE. EM blood glucose was significantly lower than EP. EM PPG was significantly lower than EP. MM PPI was significantly lower than MP. Overall, intake of MLE in the evening was more effective in improving glucose tolerance than in the morning.</td>
<td>[32]</td>
</tr>
</tbody>
</table>

AA = alglucosidase alfa, AG = anhydroglucitol, AL = atherosclerotic lesions, DH = duvoglustat HCl, DNJ = 1-deoxynojirimycin, ELE = ethanol leaf extract, EM = evening mulberry, EP = evening placebo, FBG = fasting blood glucose, FPG = fasting plasma glucose, GA = glycated albumin, GAA = acid α-glucosidase, GI = glycemic indices, HbA1c = glycated hemoglobin, HDL = high-density lipoprotein, IGT = impaired glucose tolerance, LDL = low-density lipoprotein, MA = Morus alba, MDA = malondialdehyde, MFE = mulberry leaf extract, MM = morning mulberry, MP = morning placebo, PD = Pompe disease, PP = plasma protein, PPG = post-prandial glucose, PPH = post-prandial hyperglycemia, PPI = post-prandial insulin, SAP = stable angina pectoris, SMBG = self-monitoring blood glucose, T2D = type 2 diabetic, TG = triglyceride.

DNJ, an alkaloid from MA leaves and twigs, is a potent α-glucosidase inhibitor and is effective in suppressing high blood glucose levels in human subjects, thus preventing T2D [4,9]. In diabetic mice, DNJ significantly decreased serum glucose and insulin levels, improved serum lipid contents, and reversed insulin resistance [47]. DNJ prevents the secretion of adipocytes [45]. The mechanism involved Akt-mediated insulin signaling pathway or AMP-activated protein kinase activation. A high-purity polysaccharide from mulberry leaf extract (MLE) (99.8% purity) exhibited anti-diabetic effects in streptozotocin-induced diabetic rats with effects equivalent to glibenclamide (GBC), an anti-diabetic drug [46].
insulin and thus lowers fasting and post-prandial blood glucose levels associated with T2D [48]. Out of 21 clinical studies on anti-diabetic activities, 12 studies have been attributed to DNJ (Table 1).

Hypolipidemic

Mulberroside A was a stilbenoid isolated and purified from the ethanol root extract of MA while oxyresveratrol was produced from enzymatic conversion. Both compounds exhibited hypolipidemic effects in rats on a high-cholesterol diet. Rats orally treated with mulberroside A and oxyresveratrol significantly decreased serum lipids, coronary artery risk index, and atherogenic index [49]. From the leaf of MA, a benzoferan derivative, a flavonoid, and an alkaloid displayed potent lipolytic activity in 3T3-L1 cells with values from 15.4% to 21.2% [43]. Rutin and quercetin-3-O-β-D-glucoside, two anti-diabetic flavonoids from the fruit of MA, reduced lipid accumulation in adipocytes [45].

Anti-obesity

The ability of MLE to suppress obesity and reduce visceral adipose tissues has been attributed to polyphenols.
such as quercetin, kaempferol, rutin, caffeic acid, and chlorogenic acid [6]. From MLE, 2',7-dihydroxy-4'-methoxy-8-prenyllflavon (flavan), isobavachalcone, and morachalcone B (chalcones) inhibited 3T3-L1 preadipocytes with IC\textsubscript{50} values of 37, 43, and 48 \(\mu\text{M}\), respectively [50]. A pectic polysaccharide from MFE, named JS-MP-1, displayed an anti-obesity effect by inhibiting pre-adipocytes via reducing fat cells and adipose tissue [51].

Cognitive enhancement

Mulberrofuran G (2.13 and 9.72 \(\mu\text{M}\)) and albanol B (2.47 and 1.39 \(\mu\text{M}\)) from the root bark of MA possessed strong acetylcholinesterase and butyrylcholinesterase inhibitory activities, respectively [52]. These activities showed their ability to treat cognitive dysfunction associated with Alzheimer’s disease (AD). Among four moracins isolated from the root of MA, the inhibition of BACE1, a beta-secretase enzyme in AD, moracin S was the strongest [53].

CHD attenuation

CHD is a common cardiovascular disease that causes human disability and death [54]. Among the various symptoms of CHD are angina pectoris, blood stasis syndrome, and atherosclerosis [38,39]. The underlying mechanisms of CHD are associated with inflammatory stress responses [55]. Compounds in Morus species that possess anti-inflammatory properties include DNJ and oxyresveratrol. DNJ, the main component in MA alkaloid tablets, possessed anti-inflammatory properties [56]. The alkaloid checked inflammation via regulation of mitogen-activated kinase signaling. DNJ markedly down-regulated interleukin-6 (IL-6) and tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)) cytokine levels in lipopolysaccharide (LPS)-induced RAW 264.7 and bone marrow-derived macrophage cells. Oxyresveratrol, a stilbenoid, is another ingredient of MA that exerts anti-inflammatory activity via inhibition of leukocyte migration, and involvement of mitogen-activated ERK (MEK)/extracellular signal-regulated kinase (ERK) signaling [57]. Oxyresveratrol from MA also inhibited LPS-induced translocation of nuclear kappa B and cyclooxygenase-2 activity in RAW 264.7 cells [58,59]. The anti-inflammatory activity of oxyresveratrol has also been reported in RAW 264.7 cells, Jurkat leukemic T cells, and C28/12 chondrocytes [60]. Quercetin 3-(6-malonylglucoside), a flavonol from MLE, attenuated atherosclerosis in low-density lipoprotein (LDL) receptor-deficient mice [61]. Among 36 compounds from the twig of MA, albinan D and 3-methyl-1-phenyl-1,3-butadiene exhibited the strongest anti-inflammatory activity of 4.1 and 2.2 \(\mu\text{M}\) by inhibiting NO production in RAW 264.7 cells [62]. The potent anti-inflammatory activity of prenylated flavonoids from the root of MA and MN has been reported [63]. Noteworthy is kuwanon C with an IC\textsubscript{50} value of 1.7 \(\mu\text{M}\). Albanol, an arylbenzofuran derivative from the root bark of MA, had the strongest anti-inflammatory effects towards RAW 264.7 cells, followed by sanggenon B and sanggenon D [64].

CONCLUSION

Objectives of clinical studies on MA include the effective dosage, duration, timing, and administration. Materials used include mulberry tea, MLE powder, and confections containing enriched compounds such as DNJ, and standardized extract, e.g., reducoe. Subjects are children, middle-aged adults, and elderly people, including people with CHD, impaired glucose tolerance (IGT), Pompe disease (PD), dyslipidemia, and climacteric symptoms. Some clinical studies on MA are designed to compare diabetic patients, people with dyslipidemia, and healthy or nondiabetic volunteers. Diabetic patients include post-prandial pre-diabetic, and borderline subjects. Placebo groups serve as controls. Further research is needed on the anti-diabetic mechanisms of mulberry leaves at the molecular level, which may involve multiple pathways. While most clinical trials have shown that mulberry leaves regulate blood glucose and lipid metabolism, research focusing on the safety of mulberry leaves is lacking. Studies are therefore needed to understand the distribution, absorption, metabolism, and excretion of mulberry compounds.

AUTHOR CONTRIBUTIONS

The author made substantial contributions to the conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. The author is eligible to be an author as per the International Committee of Medical Journal Editors (ICMJEs) requirements/guidelines.

FINANCIAL SUPPORT

Assoc. Prof. Eric W. C. Chan, the Lead and Sole Author, acknowledges that the funds for the publication of this review in the Journal of Applied Pharmaceutical Science (JAPS) as article processing charges (APCs) are provided by UCSI University. The author is grateful for the World’s Top 2% Scientist Research Grant, awarded by CERVIE (Grant Code: T2S-2023/004).

CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.

DATA AVAILABILITY

All data generated and analyzed are included in this research article.

USE OF ARTIFICIAL INTELLIGENCE (AI)-ASSISTED TECHNOLOGY

The authors declares that they have not used artificial intelligence (AI)-tools for writing and editing of the manuscript, and no images were manipulated using AI.

PUBLISHER’S NOTE

All claims expressed in this article are solely those of the authors and do not necessarily represent those of the

Chan / Journal of Applied Pharmaceutical Science 14 (07); 2024: 014-021

Publisher: The China Medicinal Herbs Society

Institutional affiliation: In silico analysis.

Copyright © 2024 Chan / Journal of Applied Pharmaceutical Science. All rights reserved.

45. Seong SH, Ha MT, Min BS, Jung HA, Choi JS. Moracin derivatives from morus radix as dual BACE1 and cholinesterase inhibitors with antioxidant and anti-glycation capacities. Life Sci. 2018;210:20−8. doi: https://doi.org/10.1016/j.lfs.2018.08.060

How to cite this article: