Identification of potential bioactive compounds from Azadirachta indica (Neem) as inhibitors of SARS-CoV-2 main protease: Molecular docking and molecular dynamics simulation studies

Donny Ramadhan Firdayani Firdayani Nihayatul Karimah Elpri Eka Permadi Sjaikhurrizal El Muttaqien Agus Supriyono   

Open Access   

Published:  Sep 11, 2023

DOI: 10.7324/JAPS.2023.139799
Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of coronavirus disease 2019 (COVID-19), has caused serious health problems worldwide and placed tremendous socioeconomic burdens. Azadirachta indica (Neem) is known as a versatile medicinal plant with many pharmacology activities. This study explored the potency of bioactive compounds from A. indica as inhibitors for SARS-CoV-2 main protease (Mpro) through molecular docking and molecular dynamics simulation (MDS) studies. Molecular docking and MDS were performed on 76 compounds contained in A. indica after a geometry optimization stage. This study found that odoratone (ORN), salimuzzalin (SMZ), and nimbocidin2 (NC2) had the best docking scores of −11.57, −9.83, and −9.60 kcal/mol, respectively. These scores are even better than nirmatrelvir (NTV) as an active drug targeting SARS-CoV-2 Mpro (−8.42 kcal/mol) and the reference ligand (FJC) (−7.93 kcal/mol). Although SMZ indicated the lowest average root mean square deviation value (1.90 Å) for the SARS-CoV-2 Mpro backbone disruption and the lowest average root mean square fluctuation value (1.32 Å) when interacting with residues, ORN still had the best average ΔGoMMGBSA value (−31.27 kcal/mol), which showed the strongest binding of the protein-ligand complexes. These results could be a starting point for further in vitro and in vivo evaluation of several compounds in A. indica that are potential SARS-CoV-2 Mpro inhibitors.


Keyword:     Antiviral Azadirachta indica molecular docking molecular dynamics simulation SARS-CoV-2 main protease


Citation:

Ramadhan D, Firdayani F, Karimah N, Permadi EE, El Muttaqien S, Supriyono A. Identification of potential bioactive compounds from Azadirachta indica (Neem) as inhibitors of SARS-CoV-2 main protease: Molecular docking and molecular dynamics simulation studies. J Appl Pharm Sci, 2023. Online First. https://doi.org/10.7324/JAPS.2023.139799

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Akhila A, Rani K. Chemistry of the neem tree (Azadirachta indica A. Juss.). Fortschr Chem Org Naturst, 1999; 78:47-149. https://doi.org/10.1007/978-3-7091-6394-8_2

Alzohairy MA. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid Based Complement Altern Med, 2016; 2016:7382506. https://doi.org/10.1155/2016/7382506

Atawodi SE, Atawodi JC. Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochem Rev, 2009; 8:601-20. https://doi.org/10.1007/s11101-009-9144-6

Awah FM, Uzoegwu PN, Ifeonu P. In vitro anti-HIV and immunomodulatory potentials of Azadirachta indica (Meliaceae) leaf extract. Afr J Pharm Pharmacol, 2011; 5:1353-9. https://doi.org/10.5897/AJPP11.173

Badam L, Joshi SP, Bedekar SS. "In vitro" antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. J Commun Dis, 1999; 31:79-90.

Baildya N, Khan AA, Ghosh NN, Dutta T, Chattopadhyay AP. Screening of potential drug from Azadirachta indica (Neem) extracts for SARS-CoV-2: an insight from molecular docking and MD-simulation studies. J Mol Struct, 2021; 1227:129390. https://doi.org/10.1016/j.molstruc.2020.129390

Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun, 1995; 91:43-56. https://doi.org/10.1016/0010-4655(95)00042-E

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res, 2000; 28:235-42. https://doi.org/10.1093/nar/28.1.235

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys, 2007; 126:14101. https://doi.org/10.1063/1.2408420

Catlin NR, Bowman CJ, Campion SN, Cheung JR, Nowland WS, Sathish JG, Stethem CM, Updyke L, Cappon GD. Reproductive and developmental safety of nirmatrelvir (PF-07321332), an oral SARS-CoV-2 Mpro inhibitor in animal models. Reprod Toxicol, 2022; 108:56-61. https://doi.org/10.1016/j.reprotox.2022.01.006

Chan WR, Gibbs JA, Taylor DR. Triterpenoids from Trichilia havanensis Jacq. part I. The acetates of havanensin and trichilenone, new tetracarbocyclic tetranortriterpenes. J Chem Soc Perkin Trans 1, 1973:1047-50. https://doi.org/10.1039/p19730001047

Ciotti M, Angeletti S, Minieri M, Giovannetti M, Benvenuto D, Pascarella S, Sagnelli C, Bianchi M, Bernardini S, Ciccozzi M. COVID-19 outbreak: an overview. Chemotherapy, 2019; 64:215-23. https://doi.org/10.1159/000507423

Dai W, Zhang B, Jiang X-M, Su H, Li J, Zhao Y, Xie X, Jin Z, Peng J, Liu F, Li C, Li Y, Bai F, Wang H, Cheng X, Cen X, Hu S, Yang X, Wang J, Liu X, Xiao G, Jiang H, Rao Z, Zhang LK, Xu Y, Yang H, Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020; 368:1331-5. https://doi.org/10.1126/science.abb4489

Darden T, York D, Pedersen L. Particle mesh Ewald: an N? log (N) method for Ewald sums in large systems. J Chem Phys, 1993; 98:10089-92. https://doi.org/10.1063/1.464397

Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn, 2021; 39:3347-57. https://doi.org/10.26434/chemrxiv.12129513

Dwivedi VD, Bharadwaj S, Afroz S, Khan N, Ansari MA, Yadava U, Tripathi RC, Tripathi IP, Mishra SK, Kang SG. Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. J Biomol Struct Dyn, 2021; 39:1417-30. https://doi.org/10.1080/07391102.2020.1734485

Faccin-Galhardi LC, Yamamoto KA, Ray S, Ray B, Linhares REC, Nozawa C. The in vitro antiviral property of Azadirachta indica polysaccharides for poliovirus. J Ethnopharmacol, 2012; 142:86-90. https://doi.org/10.1016/j.jep.2012.04.018

Girish K, Shankara BS. Neem-a green treasure. Electron J Biol, 2008; 4:102-11.

Govindachari TR, Geetha G. 13,14-desepoxyazadirachtin-A, a tetranortriterpenoid from Azadirachta indica. Phytochemistry, 1997; 45:397-9. https://doi.org/10.1016/S0031-9422(96)00855-2

Govindachari TR, Gopalakrishnan G, Suresh G. Isolation of various azadirachtins from neem oil by preparative high performance liquid chromatography. J Liq Chromatogr Relat Technol, 1996; 19:1729-33. https://doi.org/10.1080/10826079608014000

Govindachari TR, Suresh G, Gopalakrishnan G. Insect antifeedant and growth regulating activities of neem seed oil-the role of major tetranortriterpenoids. J Appl Entomol, 2000; 124:287-91. https://doi.org/10.1046/j.1439-0418.2000.00480.x

Hamed MA. An overview on COVID-19: reality and expectation. Bull Natl Res Cent, 2020; 44:1-10. https://doi.org/10.1186/s42269-020-00341-9

Hardianto A, Yusuf M, Hidayat IW, Ishmayana S, Soedjanaatmadja UMS. Exploring the potency of Nigella sativa seed in inhibiting SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations. Indones J Chem, 2021; 21:1252-62. https://doi.org/10.22146/ijc.65951

He S-M, Chan E, Zhou S-F. ADME properties of herbal medicines in humans: evidence, challenges and strategies. Curr Pharm Des, 2011; 17:357-407. https://doi.org/10.2174/138161211795164194

Herrera-Calderon O, Ejaz K, Wajid M, Shehzad M, Tinco-Jayo JA, Enciso-Roca E, Franco-Quino C, Yuli-Posadas RÁ, Chumpitaz-Cerrate V. Azadirachta indica: antibacterial activity of neem against different strains of bacteria and their active constituents as preventive in various diseases. Pharmacogn J, 2019; 11:1597-604. https://doi.org/10.5530/pj.2019.11.244

Hosseini M, Chen W, Xiao D, Wang C. Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precis Clin Med, 2021; 4:1-16. https://doi.org/10.1093/pcmedi/pbab001

Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, De Groot BL, Grubmüller H, MacKerell AD Jr. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods, 2017; 14:71-3. https://doi.org/10.1038/nmeth.4067

Hung Y-P, Lee J-C, Chiu C-W, Lee C-C, Tsai P-J, Hsu I-L, Ko WC. Oral nirmatrelvir/ritonavir therapy for COVID-19: the dawn in the dark? Antibiotics, 2022; 11:220. https://doi.org/10.3390/antibiotics11020220

Illian DN, Siregar ES, Sumaiyah S, Utomo AR, Nuryawan A, Basyuni M. Potential compounds from several Indonesian plants to prevent SARS-CoV-2 infection: a mini-review of SARS-CoV-2 therapeutic targets. Heliyon, 2021; 7:e06001. https://doi.org/10.1016/j.heliyon.2021.e06001

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983; 79:926-35. https://doi.org/10.1063/1.445869

Kumar AHS. Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets. Biol Eng Med Sci Rep, 2020; 6:11-3. https://doi.org/10.5530/bems.6.1.4

Kumar ASS, Bose KSC, Kumar KP, Raghavan S, Murali PM. Terpenoids and its commercial utility from Neem: the nature's own pharmacy. Asian J Chem, 2014; 26:4940. https://doi.org/10.14233/ajchem.2014.16825

Kwofie SK, Dolling NNO, Donkoh E, Laryea GM, Mosi L, Miller WA, Adinortey MB, Wilson MD. Pharmacophore-guided identification of natural products as potential inhibitors of Mycobacterium ulcerans cystathionine γ-synthase MetB. Computation, 2021; 9:32. https://doi.org/10.3390/computation9030032

Lee J, Worrall LJ, Vuckovic M, Rosell FI, Gentile F, Ton A-T, Caveney NA, Ban F, Cherkasov A, Paetzel M, Strynadka NC. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nat Commun, 2020; 11:1-9. https://doi.org/10.1038/s41467-020-19662-4

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 1997; 23:3-25. https://doi.org/10.1016/S0169-409X(96)00423-1

Luo X-D, Wu S-H, Ma Y-B, Wu D-G. A new triterpenoid from Azadirachta indica. Fitoterapia, 2000; 71:668-72. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem, 1998; 19:1639-62. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem, 2009; 30:2785-91. https://doi.org/10.1002/jcc.21256

Neidle S. Design principles for quadruplex-binding small molecules. Therapeutic applications of quadruplex nucleic acids. Academic Press, Boston, MA, pp 151-74, 2012. https://doi.org/10.1016/B978-0-12-375138-6.00009-1

Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, Agha M, Agha R. The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg, 2020; 78:185-93. https://doi.org/10.1016/j.ijsu.2020.04.018

Ouassou H, Kharchoufa L, Bouhrim M, Daoudi NE, Imtara H, Bencheikh N, ELbouzidi A, Bnouham M. The pathogenesis of coronavirus disease 2019 (COVID-19): evaluation and prevention. J Immunol Res, 2020; 2020:1357983. https://doi.org/10.1155/2020/1357983

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys, 1981; 52:7182-90. https://doi.org/10.1063/1.328693

Passos MS, Carvalho AR, Boeno SI, Virgens LL, Calixto SD, Ventura TLB, Lassounskaia E, Braz-Filho R, Curcino Vieira IJ. Terpenoids isolated from Azadirachta indica roots and biological activities. Rev Bras Farmacogn, 2019; 29:40-5. https://doi.org/10.1016/j.bjp.2018.12.003

Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem, 2015; 58:4066-72. https://doi.org/10.1021/acs.jmedchem.5b00104

Prieto-Martínez FD, Arciniega M, Medina-Franco JL. Molecular docking: current advances and challenges. TIP Rev Espec En Ciencias Químico-Biológicas, 2018; 21:65-87. https://doi.org/10.22201/fesz.23958723e.2018.0.143

Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model, 1999; 17:57-61.

Santos LHS, Ferreira RS, Caffarena ER. Integrating molecular docking and molecular dynamics simulations. Methods Mol Biol, 2019; 2053:13-34. https://doi.org/10.1007/978-1-4939-9752-7_2

Sargsyan K, Grauffel C, Lim C. How molecular size impacts RMSD applications in molecular dynamics simulations. J Chem Theory Comput, 2017; 13:1518-24. https://doi.org/10.1021/acs.jctc.7b00028

Sarkar S, Singh RP, Bhattacharya G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: an update on molecular approach. 3 Biotech, 2021; 11:1-12. https://doi.org/10.1007/s13205-021-02745-4

Sharon SFB. Molecular docking of selected bioactive compounds from Azadirachta indica for the inhibition of COVID19 protease. Int J Pharm Pharm Sci, 2020; 12:71-7. https://doi.org/10.22159/ijpps.2020v12i9.38875

Siddiqui BS, Ali ST, Rasheed M, Kardar MN. Chemical constituents of the flowers of Azadirachta indica. Helv Chim Acta, 2003; 86:2787-96. https://doi.org/10.1002/hlca.200390229

Siddiqui S, Faizi S, Siddiqui BS. Constituents of Azadirachta indica: isolation and structure elucidation of a new antibacterial tetranortriterpenoid, mahmoodin, and a new protolimonoid, naheedin. J Nat Prod, 1992; 55:303-10. https://doi.org/10.1021/np50081a005

Singh B, Sharma RA. Secondary metabolites of medicinal plants: ethnopharmacological properties, biological activity and production strategies. John Wiley & Sons, Weinheim, Germany, 2020. https://doi.org/10.1002/9783527825578

Singh KK. Neem, a treatise. IK International Pvt Ltd, New Delhi, India, 2009.

Souza PCT, Limongelli V, Wu S, Marrink SJ, Monticelli L. Perspectives on high-throughput ligand/protein docking with Martini MD simulations. Front Mol Biosci, 2021:199:657222. https://doi.org/10.3389/fmolb.2021.657222

Stewart JJP. MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, 2016. Available via http://openmopac.net/ (Accessed 2 September 2021).

Suárez-Castro A, Valle-Sánchez M, Cortés-García CJ, Chacón- García L. Molecular docking in halogen bonding. Molecular docking. IntechOpen, Paris, France, 2018. Suárez D, Díaz N. SARS-CoV-2 main protease: a molecular dynamics study. J Chem Inf Model, 2020; 60:5815-31. https://doi.org/10.1021/acs.jcim.0c00575

Sulimov A, Kutov D, Gribkova A, Ilin I, Tashchilova A, Sulimov V. Search for approaches to supercomputer quantum-chemical docking. Russian supercomputing days. Springer, Cham, Switzerland, pp 363-78, 2019. https://doi.org/10.1007/978-3-030-36592-9_30

Sulimov A, Kutov D, Ilin I, Sulimov V. Quantum-chemical quasi-docking for molecular dynamics calculations. Nanomaterials, 2022; 12:274. https://doi.org/10.3390/nano12020274

Tallei TE, Tumilaar SG, Niode NJ, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Scientifica (Cairo), 2020; 2020:6307457. https://doi.org/10.1155/2020/6307457

Tiwari V, Darmani NA, Yue BYJT, Shukla D. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phyther Res, 2010; 24:1132-40. https://doi.org/10.1002/ptr.3085

Tripathy S, Sahu SK. In-silico studies on molecular orbital's, geometry optimization and molecular docking of curcumin as an antibacterial drug targets FtsZ protein. J Peer Sci, 2018; 1:e1000006.

Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput, 2021; 17:6281-91. https://doi.org/10.1021/acs.jctc.1c00645

Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem, 2010; 31:671-90. https://doi.org/10.1002/jcc.21367

Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Aided Mol Des, 2000; 14:731-51. https://doi.org/10.1023/A:1008158231558

WHO. WHO Coronavirus (COVID-19) Dashboard 2022. 2022. Available via https://covid19.who.int/ (Accessed 7 December 2022).

Yu W, He X, Vanommeslaeghe K, MacKerell Jr AD. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem, 2012; 33:2451-68. https://doi.org/10.1002/jcc.23067

Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM. Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica. Cell Stress Chaperones, 2019; 24:351-68. https://doi.org/10.1007/s12192-019-00969-1

Zhang L, Dong L, Ming L, Wei M, Li J, Hu R, Yang J. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during late pregnancy: a report of 18 patients from Wuhan, China. BMC Pregnancy Childbirth, 2020; 20:1-7. https://doi.org/10.1186/s12884-020-03026-3

Article Metrics

3 Absract views 0 PDF Downloads 3 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required