Akhila A, Rani K. Chemistry of the neem tree (Azadirachta indica A. Juss.). Fortschr Chem Org Naturst, 1999; 78:47-149. https://doi.org/10.1007/978-3-7091-6394-8_2 |
|
Alzohairy MA. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid Based Complement Altern Med, 2016; 2016:7382506. https://doi.org/10.1155/2016/7382506 | |
|
Atawodi SE, Atawodi JC. Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochem Rev, 2009; 8:601-20. https://doi.org/10.1007/s11101-009-9144-6 | |
|
Awah FM, Uzoegwu PN, Ifeonu P. In vitro anti-HIV and immunomodulatory potentials of Azadirachta indica (Meliaceae) leaf extract. Afr J Pharm Pharmacol, 2011; 5:1353-9. https://doi.org/10.5897/AJPP11.173 | |
|
Badam L, Joshi SP, Bedekar SS. "In vitro" antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. J Commun Dis, 1999; 31:79-90. | |
|
Baildya N, Khan AA, Ghosh NN, Dutta T, Chattopadhyay AP. Screening of potential drug from Azadirachta indica (Neem) extracts for SARS-CoV-2: an insight from molecular docking and MD-simulation studies. J Mol Struct, 2021; 1227:129390. https://doi.org/10.1016/j.molstruc.2020.129390 | |
|
Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun, 1995; 91:43-56. https://doi.org/10.1016/0010-4655(95)00042-E | |
|
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res, 2000; 28:235-42. https://doi.org/10.1093/nar/28.1.235 | |
|
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys, 2007; 126:14101. https://doi.org/10.1063/1.2408420 | |
|
Catlin NR, Bowman CJ, Campion SN, Cheung JR, Nowland WS, Sathish JG, Stethem CM, Updyke L, Cappon GD. Reproductive and developmental safety of nirmatrelvir (PF-07321332), an oral SARS-CoV-2 Mpro inhibitor in animal models. Reprod Toxicol, 2022; 108:56-61. https://doi.org/10.1016/j.reprotox.2022.01.006 | |
|
Chan WR, Gibbs JA, Taylor DR. Triterpenoids from Trichilia havanensis Jacq. part I. The acetates of havanensin and trichilenone, new tetracarbocyclic tetranortriterpenes. J Chem Soc Perkin Trans 1, 1973:1047-50. https://doi.org/10.1039/p19730001047 | |
|
Ciotti M, Angeletti S, Minieri M, Giovannetti M, Benvenuto D, Pascarella S, Sagnelli C, Bianchi M, Bernardini S, Ciccozzi M. COVID-19 outbreak: an overview. Chemotherapy, 2019; 64:215-23. https://doi.org/10.1159/000507423 | |
|
Dai W, Zhang B, Jiang X-M, Su H, Li J, Zhao Y, Xie X, Jin Z, Peng J, Liu F, Li C, Li Y, Bai F, Wang H, Cheng X, Cen X, Hu S, Yang X, Wang J, Liu X, Xiao G, Jiang H, Rao Z, Zhang LK, Xu Y, Yang H, Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020; 368:1331-5. https://doi.org/10.1126/science.abb4489 | |
|
Darden T, York D, Pedersen L. Particle mesh Ewald: an N? log (N) method for Ewald sums in large systems. J Chem Phys, 1993; 98:10089-92. https://doi.org/10.1063/1.464397 | |
|
Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn, 2021; 39:3347-57. https://doi.org/10.26434/chemrxiv.12129513 | |
|
Dwivedi VD, Bharadwaj S, Afroz S, Khan N, Ansari MA, Yadava U, Tripathi RC, Tripathi IP, Mishra SK, Kang SG. Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. J Biomol Struct Dyn, 2021; 39:1417-30. https://doi.org/10.1080/07391102.2020.1734485 | |
|
Faccin-Galhardi LC, Yamamoto KA, Ray S, Ray B, Linhares REC, Nozawa C. The in vitro antiviral property of Azadirachta indica polysaccharides for poliovirus. J Ethnopharmacol, 2012; 142:86-90. https://doi.org/10.1016/j.jep.2012.04.018 | |
|
Girish K, Shankara BS. Neem-a green treasure. Electron J Biol, 2008; 4:102-11. | |
|
Govindachari TR, Geetha G. 13,14-desepoxyazadirachtin-A, a tetranortriterpenoid from Azadirachta indica. Phytochemistry, 1997; 45:397-9. https://doi.org/10.1016/S0031-9422(96)00855-2 | |
|
Govindachari TR, Gopalakrishnan G, Suresh G. Isolation of various azadirachtins from neem oil by preparative high performance liquid chromatography. J Liq Chromatogr Relat Technol, 1996; 19:1729-33. https://doi.org/10.1080/10826079608014000 | |
|
Govindachari TR, Suresh G, Gopalakrishnan G. Insect antifeedant and growth regulating activities of neem seed oil-the role of major tetranortriterpenoids. J Appl Entomol, 2000; 124:287-91. https://doi.org/10.1046/j.1439-0418.2000.00480.x | |
|
Hamed MA. An overview on COVID-19: reality and expectation. Bull Natl Res Cent, 2020; 44:1-10. https://doi.org/10.1186/s42269-020-00341-9 | |
|
Hardianto A, Yusuf M, Hidayat IW, Ishmayana S, Soedjanaatmadja UMS. Exploring the potency of Nigella sativa seed in inhibiting SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations. Indones J Chem, 2021; 21:1252-62. https://doi.org/10.22146/ijc.65951 | |
|
He S-M, Chan E, Zhou S-F. ADME properties of herbal medicines in humans: evidence, challenges and strategies. Curr Pharm Des, 2011; 17:357-407. https://doi.org/10.2174/138161211795164194 | |
|
Herrera-Calderon O, Ejaz K, Wajid M, Shehzad M, Tinco-Jayo JA, Enciso-Roca E, Franco-Quino C, Yuli-Posadas RÁ, Chumpitaz-Cerrate V. Azadirachta indica: antibacterial activity of neem against different strains of bacteria and their active constituents as preventive in various diseases. Pharmacogn J, 2019; 11:1597-604. https://doi.org/10.5530/pj.2019.11.244 | |
|
Hosseini M, Chen W, Xiao D, Wang C. Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precis Clin Med, 2021; 4:1-16. https://doi.org/10.1093/pcmedi/pbab001 | |
|
Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, De Groot BL, Grubmüller H, MacKerell AD Jr. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods, 2017; 14:71-3. https://doi.org/10.1038/nmeth.4067 | |
|
Hung Y-P, Lee J-C, Chiu C-W, Lee C-C, Tsai P-J, Hsu I-L, Ko WC. Oral nirmatrelvir/ritonavir therapy for COVID-19: the dawn in the dark? Antibiotics, 2022; 11:220. https://doi.org/10.3390/antibiotics11020220 | |
|
Illian DN, Siregar ES, Sumaiyah S, Utomo AR, Nuryawan A, Basyuni M. Potential compounds from several Indonesian plants to prevent SARS-CoV-2 infection: a mini-review of SARS-CoV-2 therapeutic targets. Heliyon, 2021; 7:e06001. https://doi.org/10.1016/j.heliyon.2021.e06001 | |
|
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983; 79:926-35. https://doi.org/10.1063/1.445869 | |
|
Kumar AHS. Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets. Biol Eng Med Sci Rep, 2020; 6:11-3. https://doi.org/10.5530/bems.6.1.4 | |
|
Kumar ASS, Bose KSC, Kumar KP, Raghavan S, Murali PM. Terpenoids and its commercial utility from Neem: the nature's own pharmacy. Asian J Chem, 2014; 26:4940. https://doi.org/10.14233/ajchem.2014.16825 | |
|
Kwofie SK, Dolling NNO, Donkoh E, Laryea GM, Mosi L, Miller WA, Adinortey MB, Wilson MD. Pharmacophore-guided identification of natural products as potential inhibitors of Mycobacterium ulcerans cystathionine γ-synthase MetB. Computation, 2021; 9:32. https://doi.org/10.3390/computation9030032 | |
|
Lee J, Worrall LJ, Vuckovic M, Rosell FI, Gentile F, Ton A-T, Caveney NA, Ban F, Cherkasov A, Paetzel M, Strynadka NC. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nat Commun, 2020; 11:1-9. https://doi.org/10.1038/s41467-020-19662-4 | |
|
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 1997; 23:3-25. https://doi.org/10.1016/S0169-409X(96)00423-1 | |
|
Luo X-D, Wu S-H, Ma Y-B, Wu D-G. A new triterpenoid from Azadirachta indica. Fitoterapia, 2000; 71:668-72. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem, 1998; 19:1639-62. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B | |
|
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem, 2009; 30:2785-91. https://doi.org/10.1002/jcc.21256 | |
|
Neidle S. Design principles for quadruplex-binding small molecules. Therapeutic applications of quadruplex nucleic acids. Academic Press, Boston, MA, pp 151-74, 2012. https://doi.org/10.1016/B978-0-12-375138-6.00009-1 | |
|
Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, Agha M, Agha R. The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg, 2020; 78:185-93. https://doi.org/10.1016/j.ijsu.2020.04.018 | |
|
Ouassou H, Kharchoufa L, Bouhrim M, Daoudi NE, Imtara H, Bencheikh N, ELbouzidi A, Bnouham M. The pathogenesis of coronavirus disease 2019 (COVID-19): evaluation and prevention. J Immunol Res, 2020; 2020:1357983. https://doi.org/10.1155/2020/1357983 | |
|
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys, 1981; 52:7182-90. https://doi.org/10.1063/1.328693 | |
|
Passos MS, Carvalho AR, Boeno SI, Virgens LL, Calixto SD, Ventura TLB, Lassounskaia E, Braz-Filho R, Curcino Vieira IJ. Terpenoids isolated from Azadirachta indica roots and biological activities. Rev Bras Farmacogn, 2019; 29:40-5. https://doi.org/10.1016/j.bjp.2018.12.003 | |
|
Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem, 2015; 58:4066-72. https://doi.org/10.1021/acs.jmedchem.5b00104 | |
|
Prieto-Martínez FD, Arciniega M, Medina-Franco JL. Molecular docking: current advances and challenges. TIP Rev Espec En Ciencias Químico-Biológicas, 2018; 21:65-87. https://doi.org/10.22201/fesz.23958723e.2018.0.143 | |
|
Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model, 1999; 17:57-61. | |
|
Santos LHS, Ferreira RS, Caffarena ER. Integrating molecular docking and molecular dynamics simulations. Methods Mol Biol, 2019; 2053:13-34. https://doi.org/10.1007/978-1-4939-9752-7_2 | |
|
Sargsyan K, Grauffel C, Lim C. How molecular size impacts RMSD applications in molecular dynamics simulations. J Chem Theory Comput, 2017; 13:1518-24. https://doi.org/10.1021/acs.jctc.7b00028 | |
|
Sarkar S, Singh RP, Bhattacharya G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: an update on molecular approach. 3 Biotech, 2021; 11:1-12. https://doi.org/10.1007/s13205-021-02745-4 | |
|
Sharon SFB. Molecular docking of selected bioactive compounds from Azadirachta indica for the inhibition of COVID19 protease. Int J Pharm Pharm Sci, 2020; 12:71-7. https://doi.org/10.22159/ijpps.2020v12i9.38875 | |
|
Siddiqui BS, Ali ST, Rasheed M, Kardar MN. Chemical constituents of the flowers of Azadirachta indica. Helv Chim Acta, 2003; 86:2787-96. https://doi.org/10.1002/hlca.200390229 | |
|
Siddiqui S, Faizi S, Siddiqui BS. Constituents of Azadirachta indica: isolation and structure elucidation of a new antibacterial tetranortriterpenoid, mahmoodin, and a new protolimonoid, naheedin. J Nat Prod, 1992; 55:303-10. https://doi.org/10.1021/np50081a005 | |
|
Singh B, Sharma RA. Secondary metabolites of medicinal plants: ethnopharmacological properties, biological activity and production strategies. John Wiley & Sons, Weinheim, Germany, 2020. https://doi.org/10.1002/9783527825578 | |
|
Singh KK. Neem, a treatise. IK International Pvt Ltd, New Delhi, India, 2009. | |
|
Souza PCT, Limongelli V, Wu S, Marrink SJ, Monticelli L. Perspectives on high-throughput ligand/protein docking with Martini MD simulations. Front Mol Biosci, 2021:199:657222. https://doi.org/10.3389/fmolb.2021.657222 | |
|
Stewart JJP. MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, 2016. Available via http://openmopac.net/ (Accessed 2 September 2021). | |
|
Suárez-Castro A, Valle-Sánchez M, Cortés-García CJ, Chacón- García L. Molecular docking in halogen bonding. Molecular docking. IntechOpen, Paris, France, 2018. Suárez D, Díaz N. SARS-CoV-2 main protease: a molecular dynamics study. J Chem Inf Model, 2020; 60:5815-31. https://doi.org/10.1021/acs.jcim.0c00575 | |
|
Sulimov A, Kutov D, Gribkova A, Ilin I, Tashchilova A, Sulimov V. Search for approaches to supercomputer quantum-chemical docking. Russian supercomputing days. Springer, Cham, Switzerland, pp 363-78, 2019. https://doi.org/10.1007/978-3-030-36592-9_30 | |
|
Sulimov A, Kutov D, Ilin I, Sulimov V. Quantum-chemical quasi-docking for molecular dynamics calculations. Nanomaterials, 2022; 12:274. https://doi.org/10.3390/nano12020274 | |
|
Tallei TE, Tumilaar SG, Niode NJ, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Scientifica (Cairo), 2020; 2020:6307457. https://doi.org/10.1155/2020/6307457 | |
|
Tiwari V, Darmani NA, Yue BYJT, Shukla D. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phyther Res, 2010; 24:1132-40. https://doi.org/10.1002/ptr.3085 | |
|
Tripathy S, Sahu SK. In-silico studies on molecular orbital's, geometry optimization and molecular docking of curcumin as an antibacterial drug targets FtsZ protein. J Peer Sci, 2018; 1:e1000006. | |
|
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput, 2021; 17:6281-91. https://doi.org/10.1021/acs.jctc.1c00645 | |
|
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem, 2010; 31:671-90. https://doi.org/10.1002/jcc.21367 | |
|
Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Aided Mol Des, 2000; 14:731-51. https://doi.org/10.1023/A:1008158231558 | |
|
WHO. WHO Coronavirus (COVID-19) Dashboard 2022. 2022. Available via https://covid19.who.int/ (Accessed 7 December 2022). | |
|
Yu W, He X, Vanommeslaeghe K, MacKerell Jr AD. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem, 2012; 33:2451-68. https://doi.org/10.1002/jcc.23067 | |
|
Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM. Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica. Cell Stress Chaperones, 2019; 24:351-68. https://doi.org/10.1007/s12192-019-00969-1 | |
|
Zhang L, Dong L, Ming L, Wei M, Li J, Hu R, Yang J. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during late pregnancy: a report of 18 patients from Wuhan, China. BMC Pregnancy Childbirth, 2020; 20:1-7. https://doi.org/10.1186/s12884-020-03026-3 | |