The correlation of gene mutation of coagulopathy cascade with elevated D-dimer levels in COVID-19 patients

Mohammad Mansour Albalbaki O’la AL-Fawares Walid Aburayyan Nesrin Seder Ola Mohammed Al-Sanabra Lamya AL-Tahrawe Mohammad Nazeeh Shatnawi   

Open Access   

Published:  Aug 26, 2023

DOI: 10.7324/JAPS.2023.145308
Abstract

SARS-CoV-2 had a pertinent implication on people’s daily lives and medical procedures during the pandemic or even after it. COVID-19 infections varied in the clinical aspect from mortality to asymptomatic episodes. The symptoms included fever, cough, difficulty breathing, loss of mobility, and chest pain. On the other hand, the patients who passed away from COVID-19 showed multiple organ failure, respiratory dysfunction, and disseminated coagulations throughout the body. D-dimer is a biomarker implemented in blood clotting and is commonly elevated in patients with thrombotic complications. This review sheds light on the correlation between gene mutations in the coagulopathy cascade among COVID-19 patients with high D-dimer levels. The elevated D-dimer levels are significantly associated with mutations in genes involved in the coagulopathy cascade. The findings suggest that these mutations may play an important role in developing thrombotic problems in COVID-19 patients. As a result, understanding the genetic basis of thrombotic development in COVID-19 could lead to new ways of avoiding and treating thrombotic problems.


Keyword:     COVID-19 hematology coagulation D-dimer fibrinogen immunothrombosis


Citation:

Albalbaki MM, AL-Fawares O, Aburayyan W, Seder N, Al-Sanabra OM, AL-Tahrawe L, et al. The correlation of gene mutation of coagulopathy cascade with elevated D-dimer levels in COVID-19 patients. J Appl Pharm Sci. 2023. http://doi.org/10.7324/JAPS.2023.145308

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11). doi: https://doi.org/10.1172/JCI.INSIGHT.138999

2. Burrell CJ, Howard CR, Murphy FA. History and impact of virology. Fenner and White’s Med Virol 2017:3. doi: https://doi.org/10.1016/B978-0-12-375156-0.00001-1

3. Hussen BM, Sabir DK, Karim Y, Karim KK, Hidayat HJ. Genome sequence analysis of SARS-COV-2 isolated from a COVID-19 patient in Erbil, Iraq. Appl Nanosci (Switzerland) 2022;1:1–7. doi: https://doi.org/10.1007/S13204-021-02300-W/FIGURES/3

4. Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020;7:1012. doi: https://doi.org/10.1093/NSR/NWAA036

5. Liu J, Liao X, Qian S, Yuan J, Wang F, Liu Y, et al. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis. 2020;26:1320–3. doi: https://doi.org/10.3201/EID2606.200239

6. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382:970–1. doi: https://doi.org/10.1056/NEJMC2001468

7. Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, et al. COVID-19 and cardiovascular disease: from bench to bedside. Circ Res. 2021;128:1214–36. doi: https://doi.org/10.1161/CIRCRESAHA.121.317997

8. Rayyan WA. Seroprevalence of SARS-CoV-2 antibodies among Jordanian citizens: a cross-sectional study of the demographic and clinical factors that ameliorate serum IgG concentration. J Appl Pharm Sci. 2022; 12(11):151–6. doi: https://doi.org/10.7324/JAPS.2022.121116

9. Talukder A, Razu SR, Alif SM, Rahman MA, Islam SMS. Association between symptoms and severity of disease in hospitalised novel coronavirus (COVID-19) patients: a systematic review and meta-analysis. J Multidiscip Healthc. 2022;15:1101–10. doi: https://doi.org/10.2147/JMDH.S357867

10. George PM, Barratt SL, Condliffe R, Desai SR, Devaraj A, Forrest I, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax. 2020;75:1009–16. doi: https://doi.org/10.1136/THORAXJNL-2020-215314

11. Rayyan WA, Hazzaa WA, Seder N, Al-Fawares O, Fararjeh AFS. The implications of COVID-19 infection on hematologic parameters and coagulation activity: a review. Biomed Pharmacol J. 2022;15:1837– 51. doi: https://doi.org/10.13005/bpj/2522

12. World Health Organisation. No Title 2022.

13. Cordero A, Santos García-Gallego C, Bertomeu-González V, Fácila L, Rodríguez-Mañero M, Escribano D, et al. Mortality associated with cardiovascular disease in patients with COVID-19. REC: CardioClinics. 2021;56:30–8. doi: https://doi.org/10.1016/j. rccl.2020.10.005

14. Raisi-Estabragh Z, Harvey NC, Petersen SE. Response to: correspondence on ‘cardiovascular disease and mortality sequelae of COVID-19 in the UK biobank’ by Jolobe. Heart. 2023;109:332 LP–333. doi: https://doi.org/10.1136/heartjnl-2022-322124

15. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17:543–58. doi: https://doi.org/10.1038/S41569-020-0413-9

16. Noor FM, Islam MM. Prevalence and associated risk factors of mortality among COVID-19 patients: a meta-analysis. J Community Health. 2020;45:1270–82. doi: https://doi.org/10.1007/S10900-020- 00920-X/TABLES/3

17. Webb Hooper M, Nápoles AM, Pérez-Stable EJ. COVID-19 and racial/ethnic disparities. JAMA. 2020;323:2466–7. doi: https://doi.org/10.1001/jama.2020.8598

18. Aburto M, Tilstra AM, Floridi G, Dowd JB. Significant impacts of the COVID-19 pandemic on race/ethnic differences in US mortality. Proc Natl Acad Sci U S A. 2022;119(35):1–9. doi: https://doi.org/10.1073/pnas.2205813119/-/DCSupplemental.Published

19. Boufkhed S, Harding R, Kutluk T, Husseini A, Pourghazian N, Shamieh O. What is the preparedness and capacity of palliative care services in middle-eastern and north African countries to respond to COVID-19? a rapid survey. J Pain Symptom Manage. 2021;61:e13– 50. doi: https://doi.org/10.1016/j.jpainsymman.2020.10.025

20. Sreedharan J, Nair SC, Muttappallymyalil J, Gopakumar A, Eapen NT, Satish KP, et al. Case fatality rates of COVID-19 across the globe: are the current draconian measures justified? Z Gesundh Wiss. 2022;30:2575–83. doi: https://doi.org/10.1007/s10389-021- 01491-4

21. Tejada-Vera B, Kramarow EA. COVID-19 Mortality in adults aged 65 and over: United States, 2020. NCHS Data Brief. 2022:1–8.

22. Jin J-M, Bai P, He W, Wu F, Liu X-F, Han D-M, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020;8:152. doi: https://doi.org/10.3389/fpubh.2020.00152

23. Gold JAW, Wong KK, Szablewski CM, Patel PR, Rossow J, da Silva J, et al. Characteristics and clinical outcomes of adult patients hospitalized with COVID-19 — georgia, march 2020. MMWR Morb Mortal Wkly Rep. 2020;69:545–50. doi: https://doi.org/10.15585/MMWR.MM6918E1

24. Khader Y, Al Nsour M. Excess mortality during the COVID-19 pandemic in Jordan: secondary data analysis. JMIR Public Health Surveill. 2021;7:e32559. doi: https://doi.org/10.2196/32559

25. Danielsen AC, Lee KM, Boulicault M, Rushovich T, Gompers A, Tarrant A, et al. Sex disparities in COVID-19 outcomes in the United States: quantifying and contextualizing variation. Soc Sci Med. 2022;294:114716. doi: https://doi.org/10.1016/j. socscimed.2022.114716

26. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus– induced lung injury. Nat Med. 2005;11:875–9. doi: https://doi.org/10.1038/nm1267

27. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20. doi: https://doi.org/10.1016/J. EJIM.2020.04.037

28. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: https://doi.org/10.1016/J. CELL.2006.02.015

29. Konno Y, Kimura I, Uriu K, Fukushi M, Irie T, Koyanagi Y, et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep. 2020;32. doi: https://doi.org/10.1016/J.CELREP.2020.108185

30. Xia H, Cao Z, Xie X, Zhang X, Chen JYC, Wang H, et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 2020;33(1). doi: https://doi.org/10.1016/J.CELREP.2020.108234

31. Tian W, Zhang N, Jin R, Feng Y, Wang S, Gao S, et al. Immune suppression in the early stage of COVID-19 disease. Nat Commun. 2020;11(1):5859. doi: https://doi.org/10.1038/S41467- 020-19706-9

32. Nakazawa D, Ishizu A. Immunothrombosis in severe COVID-19. EbioMedicine. 2020;59:102942. doi: https://doi.org/10.1016/J. EBIOM.2020.102942

33. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13:34–45. doi: https:// doi.org/10.1038/NRI3345

34. Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC, de Boer HH, et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe. 2020;1:e290–9. doi: https://doi.org/10.1016/S2666-5247(20)30144-0

35. Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distresssyndrome. Blood. 2020;136:1169. doi: https://doi.org/10.1182/BLOOD.2020007008

36. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184:861–80. doi: https://doi.org/10.1016/j.cell.2021.01.007

37. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–9. doi: https://doi.org/10.1172/JCI137244

38. Lo Presti E, Dieli F, Meraviglia S. Lymphopenia in COVID-19: γδ T Cells-based therapeutic opportunities. Vaccines (Basel). 2021;9(6):562. doi: https://doi.org/10.3390/vaccines9060562

39. Moon C. Fighting COVID-19 exhausts T cells. Nat Rev Immunol. 2020;20:277. doi: https://doi.org/10.1038/S41577-020-0304-7

40. Nienhold R, Ciani Y, Koelzer VH, Tzankov A, Haslbauer JD, Menter T, et al. Two distinct immunopathological profiles in autopsy lungs of COVID-19. Nat Commun. 2020;11(1):5086. doi: https://doi.org/10.1038/S41467-020-18854-2

41. Janssen NAF, Grondman I, De Nooijer AH, Boahen CK, Koeken VACM, Matzaraki V, et al. Dysregulated innate and adaptive immune responses discriminate disease severity in COVID-19. J Infect Dis. 2021;223:1322–33. doi: https://doi.org/10.1093/infdis/jiab065

42. Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396:320–32. doi: https://doi.org/10.1016/S0140-6736(20)31305-2

43. Kaneko N, Kuo HH, Boucau J, Farmer JR, Allard-Chamard H, Mahajan VS, et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell. 2020;183:143–57.e13. doi: https://doi.org/10.1016/J.CELL.2020.08.025

44. Tillett RL, Sevinsky JR, Hartley PD, Kerwin H, Crawford N, Gorzalski A, et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis. 2021;21:52–8. doi: https://doi.org/10.1016/S1473-3099(20)30764-7

45. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20:363–74. doi: https://doi.org/10.1038/S41577-020-0311-8

46. Luo M, Liu J, Jiang W, Yue S, Liu H, Wei S. IL-6 and CD8+ T cell counts combined are an early predictor of in-hospital mortality of patients with COVID-19. JCI Insight 2020;5(13):e139024. doi: https://doi.org/10.1172/JCI.INSIGHT.139024

47. Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity. 2020;52:731–3. doi: https://doi.org/10.1016/J.IMMUNI.2020.04.003

48. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537. doi: https://doi.org/10.1016/J.AUTREV.2020.102537

49. LaPelusa A, Dave HD. Physiology, hemostasis. StatPearls 2021.

50. Getz TM, Piatt R, Petrich BG, Monroe D, Mackman N, Bergmeier W. Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition. JThromb Haemost. 2015;13:417–25. doi: https://doi.org/10.1111/jth.12802

51. Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58:515. doi: https://doi.org/10.4103/0019-5049.144643

52. Lowe GDO, Rumley A, Mackie IJ. Plasma fibrinogen. Ann Clin Biochem. 2004;41:430–40. doi: https://doi.org/10.1258/0004563042466884

53. Mahdieh N, Rabbani B. An overview of mutation detection methods in genetic disorders. Iran J Pediatr. 2013;23:375.

54. Deme D, Telekes A. [Prognostic importance of cross-linked fibrin degradation products (D-dimer) in oncology]. Magy Onkol. 2017;61:319–26.

55. Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing G-J, Harjola V-P, et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41:543–603. doi: https://doi.org/10.1093/eurheartj/ehz405

56. Haematology TL. COVID-19 coagulopathy: an evolving story. Lancet Haematol. 2020;7:e425. doi: https://doi.org/10.1016/S2352-3026(20)30151-4

57. Logothetis CN, Weppelmann TA, Jordan A, Hanna C, Zhang S, Charkowick S, et al. D-Dimer testing for the exclusion of pulmonary embolism among hospitalized patients with COVID-19. JAMA Netw Open. 2021;4:e2128802. doi: https://doi.org/10.1001/jamanetworkopen.2021.28802

58. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18:2103–9. doi: https://doi.org/10.1111/jth.14975

59. Bosso M, Thanaraj TA, Abu-Farha M, Alanbaei M, Abubaker J, Al-Mulla F. The Two faces of ACE2: the role of ACE2 receptor and its polymorphisms in hypertension and COVID-19. Mol Ther Methods Clin Dev. 2020;18:321–7. doi: https://doi.org/10.1016/J.OMTM.2020.06.017

60. Smith NL, Huffman JE, Strachan DP, Huang J, Dehghan A, Trompet S, et al Genetic predictors of fibrin D-dimer levels in healthy adults. Circulation. 2011;123:1864–72. doi: https://doi.org/10.1161/CIRCULATIONAHA.110.009480

61. Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol. 2004;24:1015–22. doi: https://doi.org/10.1161/01.ATV.0000130465.23430.74

62. Gailani D, Renné T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol. 2007;27:2507–13. doi: https://doi.org/10.1161/ATVBAHA.107.155952

63. Steen M. Factor Va-factor Xa interactions: molecular sites involved in enzyme:cofactor assembly. Scand J Clin Lab Invest Suppl. 2002;237:5–12. doi: https://doi.org/10.1080/003655102762377439

64. Liu W, Cao Y. Tissue engineering technology for tissue repair and regeneration. Compr Biotechnol. 2019:173–201. doi: https://doi.org/10.1016/B978-0-444-64046-8.00300-1

65. Tomaiuolo M, Brass LF, Stalker TJ. Regulation of platelet activation and coagulation and its role in vascular injury and arterial thrombosis. Interv Cardiol Clin. 2017;6:1. doi: https://doi.org/10.1016/J.ICCL.2016.08.001

66. Unruh D, Mirkov S, Wray B, Drumm M, Lamano J, Li YD, et al. Methylation-dependent tissue factor suppression contributes to the reduced malignancy of idh1-mutant gliomas. Clin Cancer Res. 2019;25:747–59. doi: https://doi.org/10.1158/1078-0432.CCR-18-1222

67. Mackman N. The many faces of tissue factor. J Thromb Haemost. 2009;7:136. doi: https://doi.org/10.1111/J.1538-7836.2009.03368.X

68. Francis CW, Hogg N HJ. Francis CW, Hogg N, Hargrove J, et al. Fibrinogen (Factor III) gene mutations and thrombophilia. 2000;215–20.

69. Smith SA, Travers RJ, Morrissey JH. How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol. 2015;50:326–36. doi: https://doi.org/10.3109/10409238.2015.1050550

70. Brown MA, Stenberg LM, Stenflo J. Coagulation Factor Xa. Handbook of Proteolytic Enzymes. 2013;3:2908. doi: https://doi.org/10.1016/B978-0-12-382219-2.00642-6

71. Cramer TJ, Griffin JH, Gale AJ. Factor V Is an Anticoagulant Cofactor for Activated Protein C during Inactivation of Factor Va. Pathophysiol Haemost Thromb. 2010;37:17. doi: https://doi.org/10.1159/000315141

72. Lee S, Lee CH, Seo MS, Yoo J il. Integrative analyses of genes about venous thromboembolism: An umbrella review of systematic reviews and meta-analyses. Medicine. 2022;101:e31162. doi: https://doi.org/10.1097/MD.0000000000031162

73. Meer FJ, Rosendaal FR, de Groot PG, Reitsma PH. D-dimer levels and the risk of venous thrombosis in carriers of the factor V Leiden mutation. Thromb Haemost. 2003;89:487–91.

Article Metrics

1 Absract views 8 PDF Downloads 9 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required