Antibacterial and cytotoxic secondary metabolites from endophytic fungi associated with Antidesma bunius leaves

Ni Putu Ariantari I Putu Yogi Astara Putra Ni Putu Eka Leliqia Putu Sanna Yustiantara Meitini Wahyuni Proborini Nadzifa Nugraheni Ummi Maryam Zulfin Riris Istighfari Jenie Edy Meiyanto   

Open Access   

Published:  Apr 05, 2023

DOI: 10.7324/JAPS.2023.101347
Abstract

Endophytic fungi isolated from Antidesma bunius leaves were investigated in this study. Six fungal endophytes were identified as Penicillium steckii AAB-01, Nemania bipapillata AAB-02, Xylaria feejeensis AAB-03, Hypomontagnella monticulosa AAB-04, Daldinia eschscholtzii AAB-05, and Phyllosticta capitalensis AAB-06. All of the isolated endophytic fungi were subjected to fermentation on rice media, followed by extraction with ethyl acetate. When tested for antibacterial activity, P. steckii AAB-01 extract showed the most potent inhibition against Staphylococcus aureus ATCC 6538 and Staphylococcus epidermidis ATCC 12228. Toxicity screening employing brine shrimp lethality test (BSLT) revealed potential toxicity of P. steckii AAB-01 and X. feejeensis AAB-03 extracts. Further investigation showed P. steckii AAB-01 extract had the highest inhibition toward MCF-7 cells, while D. eschscholtzii AAB-05 extract revealed the strongest cytotoxicity against 4T1 cells. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis tentatively identified five compounds, where indole acetic acid, O-acetylharmol, and oxindole I were suggested as the major metabolites in P. steckii AAB-01 extract, while 6-hydroxymelatonin and 2-methyl-6- pentadecylpyridine were suggested as the major metabolites in D. eschscholtzii AAB-05 extract. This is the first report on LC-MS/MS identification of the main metabolites from bioactive extracts of P. steckii AAB-01 and D. eschscholtzii AAB-05 isolated from the leaves of A. bunius, which might contribute to the antibacterial and cytotoxic properties of the extracts. Thus, a detailed investigation of antibacterial and cytotoxic metabolites from these endophytes merits further studies.


Keyword:     Antidesma bunius antibacterial cytotoxicity endophytic fungi LC-MS/ MS


Citation:

Ariantari NP, Putra IPYA, Leliqia NPE, Yustiantara PS, Proborini MW, Nugraheni N, Zulfin UM, Jenie RI, Meiyanto E. Antibacterial and cytotoxic secondary metabolites from endophytic fungi associated with Antidesma bunius leaves. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.101347

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Aksornchu P, Chamnansilpa N, Adisakwattana S, Thilavech T, Choosak C, Marnpae M, Mäkynen K, Dahlan W, Ngamukote S. Inhibitory effect of Antidesma bunius fruit extract on carbohydrate digestive enzymes activity and protein glycation in vitro. Antioxidants, 2020; 10(1):32. https://doi.org/10.3390/antiox10010032

Alster CJ, Allison SD, Johnson NG, Glassman SI, Treseder KK. Phenotypic plasticity of fungal traits in response to moisture and temperature. ISME Commun, 2021; 1(1):1-8. https://doi.org/10.1038/s43705-021-00045-9

Ariantari NP, Ancheeva E, Wang C, Ma?ndi A, Knedel T-O, Kurta?n T, Chaidir C, Mu?ller WEG, Kassack MU, Janiak C, Daletos G, Proksch P. Indole diterpenoids from an Endophytic Penicillium sp. J Nat Prod, 2019; 82(6):1412-23. https://doi.org/10.1021/acs.jnatprod.8b00723

Ariantari NP, Ancheeva E, Frank M, Stuhldreier F, Meier D, Gr¨oner Y, Reimche I, Teusch N, Wesselborg S, Mu?ller WEG, Kalscheuer R, Liu Z, Proksch P. Didymellanosine, a new decahydrofluorene analogue, and ascolactone C from Didymella sp. IEA-3B.1, an endophyte of Terminalia catappa. RSC Adv, 2020; 10(12):7232-40. https://doi.org/10.1039/C9RA10685E

Ariantari NP, Frank M, Gao Y, Stuhldreier F, Kiffe-Delf A-L, Hartmann R, Hofert SP, Janiak C, Wesselborg S, Mu?ller WEG, et al. Fusaristatins D-F and (7S,8R)-(−)-chlamydospordiol from Fusarium sp. BZCB-CA, an endophyte of Bothriospermum chinense. Tetrahedron, 2021; 85:132065 https://doi.org/10.1016/j.tet.2021.132065

Bilal S, Shahzad R, Khan AL, Al-Harrassi A, Kim CK, Lee I.J. Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. J Hazard Mater, 2019; 379:120824. https://doi.org/10.1016/j.jhazmat.2019.120824

Chamnansilpa N, Aksornchu P, Adisakwattana S, Thilavech T, Makynen K, Dahlan W, Ngamukote S. Anthocyanin-rich fraction from Thai berries interferes with the key steps of lipid digestion and cholesterol absorption. Heliyon, 2020; 6(11):1-6. https://doi.org/10.1016/j.heliyon.2020.e05408

Chen C-M, Chen W-H, Tao H-M, Yang B, Zhou X-F, Luo X-W, Liu T-H. Diversified polyketides and nitrogenous compounds from the mangrove endophytic fungus Penicillium steckii SCSIO 41025. Chin J Chem, 2021a; 39(8):2132-40. https://doi.org/10.1002/cjoc.202100226

Chen C-M, Chen W-H, Pang X-Y, Liao S-R, Wang J-F, Lin X-P, Yang B, Zhou X-F, Luo X-W, Liu Y-H. Pyrrolyl 4-quinolone alkaloids from the mangrove endophytic fungus Penicillium steckii SCSIO 41025: chiral resolution, consurational assignment, and enzyme inhibitory activities. Phytochemistry, 2021b; 186:1-8. https://doi.org/10.1016/j.phytochem.2021.112730

Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th edition, Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, PA, 2018..

Costa RLB, Gradishar WJ. Triple-negative breast cancer: Current practice and future directions. J Oncol Pract, 2017; 13(5):301-3. https://doi.org/10.1200/JOP.2017.023333

de la Torre BG, Albericio F. The pharmaceutical industry in 2021. An analysis of FDA drug approvals from the perspective of molecules. Molecules, 2022; 27(3):1-15. https://doi.org/10.3390/molecules27031075

Douanla-Meli C, Langer E, Diversity and molecular phylogeny of fungal endophytes associated with Diospyros crassiflora. Mycology, 2012; 3(3):175-187.

Fan M, Chen X, Luo X, Zhang H, Liu Y, Zhang Y, Wu J, Zhao C, Zhao P. Diversity of endophytic fungi from the leaves of Vaccinium dunalianum. Lett Appl Microbiol, 2020; 71(5):479-89. https://doi.org/10.1111/lam.13345

García-Méndez MC, MacÍas-Ruvalcaba NA, Lappe-Oliveras P, Hernández-Ortega S, MacÍas-Rubalcava ML. Phytotoxic potential of secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b isolated from Sapium macrocarpum. J Agric Food Chem, 2016; 64(21):4255-63. https://doi.org/10.1021/acs.jafc.6b01111

Geronimo AJO, Bancual MEJF, Ko KAL, Soliba LML, Ildefonso JJC, Soriano AMB, Tagalog ACMM, Acosta NE, Ang VS, Apigo MA,. Free radical scavenging and in vitro cytotoxic activity of Bugnay (Antidesma bunius) leaves extract against A549 human lung adenocarcinoma and HCT- 116 human colorectal cancer cell lines. Indones J Cancer Chemoprevent, 2020; 11(3):124-33. https://doi.org/10.14499/indonesianjcanchemoprev11iss3pp124-133

Golias HC, Polonio J, dos Santos Ribeiro MA, Polli A, da Silva AA, Bulla AM, Volpato H, Nakamura CV, Meurer EC, Azevedo JL, Pamphile JA. Tibouchina granulosa (Vell.) Cogn (Melastomataceae) as source of endophytic fungi: Isolation, identification, and antiprotozoal activity of metabolites from Phyllosticta capitalensis. Braz J Microbiol, 2020; 51(2):557-69. https://doi.org/10.1007/s42770-019-00221-z

Hamidi ?R, Jovanova B, Panovska TK. Toxic?logical evaluation of the plant products using brine shrimp (Artemia salina L.) model. Maced Pharm Bull, 2014; 60(1):9-18. https://doi.org/10.33320/maced.pharm.bull.2014.60.01.002

Hao M-J, Chen P-N, Li H-J, Wu F, Zhang G-Y, Shao Z-Z, Liu X-P, Ma W-Z, Xu J, Mahmud T, Lan W-J. β-Carboline alkaloids from the deep-sea fungus Trichoderma sp. MCCC 3A01244 as a new type of anti-pulmonary fibrosis agent that inhibits TGF-β/smad signaling pathway. Front Microbiol, 2022; 13:1-11. https://doi.org/10.3389/fmicb.2022.947226

Hu X-L, Bian X-Q, Wu X, Li J-Y, Hua H-M, Pei Y-H, Han A-H, Bai J. Penioxalamine A, a novel prenylated spiro-oxindole alkaloid from Penicillium oxalicum TW01-1. Tetrahedron Let, 2014; 55(29):3864-7. https://doi.org/10.1016/j.tetlet.2014.05.104

Hu XY, Li XM, Wang BG, Meng LH. Uncommon polyketides from Penicillium steckii AS-324, a marine endozoic fungus isolated from deep-sea coral in the magellan seamount. Int J Mol Sci, 2022; 23(11):1-13. https://doi.org/10.3390/ijms23116332

Hughes KW, Petersen RH, Lodge DJ, Bergemann SE, Baumgartner K, Tulloss RE, Lickey E, Cifuentes J. Evolutionary consequences of putative intra- and interspecific hybridization in agaric fungi. Mycologia, 2013; 105(6):1577-94. https://doi.org/10.3852/13-041

Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun M. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One, 2018; 13(11):e0208150. https://doi.org/10.1371/journal.pone.0208150

Indrawati I, Rosiana N, Fitri A, Rizki M, Nada N. Antimicrobial potency from endophytic bacteria of bignay plant (Antidesma bunius (L.) Spreng.) against pathogenic bacteria. World News Nat Sci, 2020; 31:1-8.

Islary A, Sarmah J, Basumatary S. Nutritional value, phytochemicals and antioxidant properties of two wild edible fruits (Eugenia operculata Roxb. and Antidesma bunius L.) from Assam, North- East India. Med J Nutrition Metab, 2017; 10(1):29-40. https://doi.org/10.3233/MNM-16119

Jorjong S, Butkhup L, Samappito S. Phytochemicals and antioxidant capacities of Mao-Luang (Antidesma bunius L.) cultivars from Northeastern Thailand. Food Chem, 2015; 181:248-55. https://doi.org/10.1016/j.foodchem.2015.02.093

Krongyut O, Sutthanut K. Phenolic profile, antioxidant activity, and anti-obesogenic bioactivity of Mao luang fruits (Antidesma bunius L.). Molecules, 2019; 24(22):1-15. https://doi.org/10.3390/molecules24224109

Kjer J, Debbab A, Aly AH, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc, 2010; 5(3):479-90. https://doi.org/10.1038/nprot.2009.233

Lambert C, Wendt L, Hladki AI, Stadler M, Sir EB. Hypomontagnella (Hypoxylaceae): a new genus segregated from Hypoxylon by a polyphasic taxonomic approach. Mycol Prog, 2019; 18(1-2):187-201. https://doi.org/10.1007/s11557-018-1452-z

Lee C, Sohn JH, Jang JH, Ahn JS, Oh H, Baltrusaitis J, Hwang IH, Gloer JB. Cycloexpansamines A and B: spiroindolinone alkaloids from a marine isolate of Penicillium sp. (SF-5292). J Antibiot, 2015; 68(11):715-8. https://doi.org/10.1038/ja.2015.56

Lim TK. Edible medicinal and non-medicinal plants. Springer Dordrecht, Dordrecht, Netherland, 2012. https://doi.org/10.1007/978-94-007-4053-2

Lin L, Jiang N, Wu H, Mei Y, Yang J, Tan R. Cytotoxic and antibacterial polyketide-indole hybrids synthesized from indole-3-carbinol by Daldinia eschscholzii. Acta Pharm Sin B, 2019; 9(2):369-80. https://doi.org/10.1016/j.apsb.2018.09.011

Liu H-X, Tan H-B, Li S-N, Chen Y-C, Li H-H, Zhang W-M. Two new metabolites from Daldinia eschscholtzii, an endophytic fungus derived from Pogostemon cablin. J Asian Nat Prod Res, 2019; 21(2):150-6. https://doi.org/10.1080/10286020.2017.1392512

Livezey M, Kim JE, Shapiro DJ. A new role for estrogen receptor A in cell proliferation and cancer: Activating the anticipatory unfolded protein response. Front Endocrinol, 2018; 9:325. https://doi.org/10.3389/fendo.2018.00325

Lutfia A, Munir E, Yurnaliza Y, Basyuni M. Chemical analysis and anticancer activity of sesterterpenoid from an endophytic fungus Hypomontagnella monticulosa Zg15SU and its host Zingiber griffithii baker. Heliyon, 2021; 7(2):1-20. https://doi.org/10.1016/j.heliyon.2021.e06292

Malmstrùm J, Christophersen C, Frisvad JC. Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry, 2000; 54(3):301-9. https://doi.org/10.1016/S0031-9422(00)00106-0

Mauldina MG, Sauriasari R, Elya B. α-glucosidase inhibitory activity from ethyl acetate extract of Antidesma bunius (L.) Spreng stem bark containing triterpenoids. Pharmacogn Mag, 2017; 13(52):590-94. https://doi.org/10.4103/pm.pm_25_17

Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DJ, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med, 1982; 45(5):31-4. https://doi.org/10.1055/s-2007-971236

Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Sarma VV. 2,4-Di-tert-butylphenol isolated from an endophytic fungus, Daldinia eschscholtzii, reduces virulence and quorum sensing in Pseudomonas aeruginosa. Front Microbiol, 2020; 11:1668. https://doi.org/10.3389/fmicb.2020.01668

Mishra S, Priyanka, Sharma S. Metabolomic insights into endophyte-derived bioactive compounds. Front Microbiol, 2022; 13:835931. https://doi.org/10.3389/fmicb.2022.835931

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod, 2020; 83(3):770-803. https://doi.org/10.1021/acs.jnatprod.9b01285

Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep, 2021; 11(1). https://doi.org/10.1038/s41598-021-92679-x

Ogba N, Manning NG, Bliesner BS, Ambler SK, Haughian JM, Pinto MP, Jedlicka P, Joensuu K, Heikkilä P, Horwitz KB. Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells. Breast Cancer Res, 2014; 16(6):1-14. https://doi.org/10.1186/s13058-014-0489-4

Panda SK, Padhi L, Leyssen P, Liu M, Neyts J, Luyten W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the similipal biosphere reserve, Odisha, India. Front Pharmacol, 2017; 8:658. https://doi.org/10.3389/fphar.2017.00658

Perez KE, Foltz MJ, Volk TJ. Molecular phylogeny and morphology reveal three new species of Cantharellus within 20 m of one another in Western Wisconsin, USA. Mycologia, 2013; 105(2):447-61. https://doi.org/10.3852/12-181

Radhakrishnan R, Shim KB, Lee BW, Hwang CD, Pae SB, Park CH, Kim SU, Lee CK, Baek IY. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.). J Microbiol Biotechnol, 2013; 23:856-63. https://doi.org/10.4014/jmb.1209.09045

Raja HA, Miller AN, Pearce CJ, Oberlies NH. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod, 2017; 80(3):756-70. https://doi.org/10.1021/acs.jnatprod.6b01085

Rajashekara S, Reena D, Mainavi MV, Sandhya LS, Baro U. Biological isolation and characterization of Catharanthus roseus (L.) G. Don methanolic leaves extracts and their assessment for antimicrobial, cytotoxic, and apoptotic activities. BMC Complement Med Ther, 2022; 22(1):328. https://doi.org/10.1186/s12906-022-03810-y

Rajashekara S, Shrivastava A, Sumhitha S, Kumari, S. Biomedical applications of biogenic zinc oxide nanoparticles manufactured from leaf extracts of Calotropis gigantea (L.) Dryand. BioNanoSci, 2020; 10:654-71. https://doi.org/10.1007/s12668-020-00746-w

Ratnadewi AAI, Rahayu LD, Rochman J, Susilowati, Nugraha AS, Siswoyo TA. Revealing anti-diabetic potency of medicinal plants of Meru Betiri National Park, Jember-Indonesia. Arab J Chem, 2020; 13(1):1831-6. https://doi.org/10.1016/j.arabjc.2018.01.017

Rivera-Chávez J, Figueroa M, González MDC, Glenn AE, Mata R. α-Glucosidase inhibitors from a Xylaria feejeensis associated with Hintonia latiflora. J Nat Prod, 2015; 78(4):730-735. https://doi.org/10.1021/np500897y

Sarkar S, Dey A, Kumar V, Batiha GE, El-Esawi MA, Tomczyk M, Ray P. Fungal endophyte: an interactive endosymbiont with the capability of modulating host physiology in myriad ways. Front Plant Sci, 2021; 12:701800. https://doi.org/10.3389/fpls.2021.701800

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium. Nuclear ribosomal ITS region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA, 2012; 109(16):6241-6. https://doi.org/10.1073/pnas.1117018109

Sharma H, Rai AK, Chettri R, Nigam PS. Bioactivites of Penicillium citrinum isolated from a medicinal plant Swertia chirayita. Arch Microbiol, 2021; 203(8): 5173-82. https://doi.org/10.1007/s00203-021-02498-x

Shin HJ, Pil GB, Heo SJ, Lee H-S, Lee JS, Lee Y-J, Lee J, Wo HS. Anti-inflammatory activity of tanzawaic acid derivatives from a marine-derived fungus Penicillium steckii 108YD142. Mar Drugs, 2016; 14(1):14. https://doi.org/10.3390/md14010014

Siriwach R, Kinoshita H, Kitani S, Igarashi Y, Pansuksan K, Panbangred W, Nihira T. Xylaropyrone, a new γ-pyrone from the endophytic fungus Xylaria feejeensis MU18. J Antibiot (Tokyo), 2011; 64(2):217-9. https://doi.org/10.1038/ja.2010.160

Slepecky RA, Starmer WT. Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia, 2009; 101(6):823-32. https://doi.org/10.3852/08-197

Stadler M, Læssøe T, Fournier J, Decock C, Schmieschek B, Tichy H-V, Peršoh DA. Polyphasic taxonomy of Daldinia (Xylariaceae). Stud Mycol, 2014; 77:1-143. https://doi.org/10.3114/sim0016

Wang G, Fan JY, Zhang WJ, Hua CP, Chen CJ, Yan W, Ge HM, Jiao RH, Tan RX. Polyketides from mantis-associated fungus Daldinia eschscholzii IFB-TL01. Chem Biodivers, 2015; 12(9):1349-55. https://doi.org/10.1002/cbdv.201400414

Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 2012; 17(9):10754-73. https://doi.org/10.3390/molecules170910754

Widjajanti H, Muharni, Nurnawati E, Tripuspita V. The potency of endophytic fungi isolated from Hippobroma longiflora (L) G. Don as an antioxidant sources. In: Proceedings of IOP Conference Series: Earth and Environmental Science, 2021 Oct 23-24, Banjarbaru City, Indonesia. https://doi.org/10.1088/1755-1315/976/1/012045

Wu X-Z, Huang W-J, Liu W, Mándi A, Zhang Q, Zhang L, Zhang W, Kurtán T, Yuan C-S, Changsheng Z. Penicisteckins A-F, isochroman-derived atropisomeric dimers from Penicillium steckii HNNU-5B18. J Nat Prod, 2021; 84(11):2953-60. https://doi.org/10.1021/acs.jnatprod.1c00787

Wutthiwong N, Suthiphasilp V, Pintatum A, Suwannarach N, Kumla J, Lumyong S, Maneerat T, Charoensup R, Cheenpracha S, Limtharakul T, Pyne SG, Laphookhieo S. Daldiniaeschsone A, a rare tricyclic polyketide having a chromone unit fused to a δ-lactone and its symmetrical biphenyl dimer, daldiniaeschsone B, from an endophytic fungus Daldinia eschscholtzii SDBR-CMUNKC745. J Fungi, 2021; 7(5):358. https://doi.org/10.3390/jof7050358

Xiao JA, Cheng XL, Li YC, He YM, Li JL, Liu ZP, Xia PJ, Su W, Yang H. Palladium-catalysed ring-opening [3 + 2]-annulation of spirovinylcyclopropyl oxindole to diastereoselectively access spirooxindoles. Org Biomol Chem, 2018; 17(1):103-7. https://doi.org/10.1039/C8OB02859A

Xu X, Zhang X, Nong X, Wei X, Qi S. Oxindole alkaloids from the fungus Penicillium commune DFFSCS026 isolated from deep-sea-derived sediments. Tetrahedron, 2015; 71(4):610-15. https://doi.org/10.1016/j.tet.2014.12.031

Yao G, Chen X, Zheng H, Liao D, Yu Z, Wang Z, Chen J. Genomic and chemical investigation of bioactive secondary metabolites from a marine-derived fungus Penicillium steckii P2648. Front Microbiol, 2021; 12:1-10. https://doi.org/10.3389/fmicb.2021.600991

Yurchenko EA, Menchinskaya ES, Pislyagin EA, Trinh PTH, Ivanets EV, Smetanina OF, Yurchenko AN. Neuroprotective activity of some marine fungal metabolites in the 6-hydroxydopamin- and paraquat-induced parkinson's disease models. Mar Drugs, 2018; 16(11):457. https://doi.org/10.3390/md16110457

Zakaria L, Aziz WNW. Molecular identification of endophytic fungi from banana leaves (Musa spp.). Trop Life Sci Res, 2018; 29(2):201- 11. https://doi.org/10.21315/tlsr2018.29.2.14

Zaman S, Islam M, Koly S, Faisal T, Rakib K. Evaluation of cytotoxicity and antibacterial activities of methanolic extract of Antidesma bunius (Linn.) (Family Euphorbiaceae) Leaf. J Adv Med Pharm Sci, 2018; 16(2):1-7. https://doi.org/10.9734/JAMPS/2018/40004

Zhang YL, Zhang J, Jiang N, Lu YH, Wang L, Xu SH, Wang W, Zhang GF, Xu Q, Ge HM, Ma J, Song YC, Tan RX. Immunosuppressive polyketides from mantis-associated Daldinia eschscholzii. J Am Chem Soc, 2011; 133(15):5931-40. https://doi.org/10.1021/ja110932p

Zhang AH, Jiang N, Wang XQ, Tan RX. Galewone, an anti-fibrotic polyketide from Daldinia eschscholzii with an undescribed carbon skeleton. Sci Rep, 2019; 9(1):14316. https://doi.org/10.1038/s41598-019-50868-9

Zhu X, Liu Y, Hu Y, Lv X, Shi Z, Yu Y, Jiang X, Feng F, Xu J. Neuroprotective activities of constituents from Phyllosticta capitalensis, an endophyte fungus of Loropetalum chinense var. rubrum. Chem Biodivers, 2021; 18(8):e2100314. https://doi.org/10.1002/cbdv.202100314

Article Metrics

2 Absract views 2 PDF Downloads 4 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required