Nuclear receptors and other molecular targets in type 2 diabetes mellitus
Deepa Sugumar1, Emdormi Rymbai1, Soumya Vasu2, Divakar Selvaraj1
1Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India.
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
Open Access
Published:  Feb 25, 2023
DOI: 10.7324/JAPS.2023.132467Diabetes is a group of metabolic disorders characterized by chronic hyperglycemia and glucose intolerance. Diabetes occurs because of defects in insulin secretion, insulin action, or both. Type 2 diabetes mellitus (T2DM), with a prevalence of more than 95%, is the most prevalent form of diabetes. Over the years, the effectiveness of the drugs used to treat diabetes has reduced. For this reason, targeting newer molecular targets might lead to the effectiveness of drugs. Over the years, there has been a great interest in targeting nuclear receptors for the treatment of T2DM. Some of these targets have been applied at the clinical level. However, other molecular targets belonging to G-coupled protein receptors, enzymes, and kinases have also been explored. Hence, in this review, we will discuss a few potential targets that have been applied clinically or could be the target for the treatment of T2DM.
Sugumar D, Rymbai E, Vasu S, Selvaraj D. Nuclear receptors and other molecular targets in type 2 diabetes mellitus. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.132467
Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. Pparγ signaling and metabolism: the good, the bad and the future. Nat Med, 2013; doi:10.1038/nm.3159. https://doi.org/10.1038/nm.3159 | |
Al-Rifai RH, Majeed M, Qambar MA, Ibrahim A, Alyammahi KM, Aziz F. Type 2 diabetes and pre-diabetes mellitus: a systematic review and meta-analysis of prevalence studies in women of childbearing age in the middle east and North Africa, 2000-2018. Syst Rev, 2019; 8(1):1-32; doi:10.1186/s13643-019-1187-1. https://doi.org/10.1186/s13643-019-1187-1 | |
Alexander SPH, Cidlowski JA, Kelly E, Marrion N V., Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA. The concise guide to pharmacology 2017/18: nuclear hormone receptors. Br J Pharmacol, 2017; 174(1):S208-24; doi:10.1111/bph.13880. https://doi.org/10.1111/bph.13880 | |
Almlöf T, Gustafsson JA, Wright AP. Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor. Mol Cell Biol, 1997; 17(2):934-45; doi:10.1128/mcb.17.2.934. https://doi.org/10.1128/MCB.17.2.934 | |
Almlöf T, Wallberg AE, Gustafsson JÅ, Wright APH. Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor τ1-core activation domain and target factors. Biochemistry, 1998; 37(26):9586-94; doi:10.1021/bi973029x. https://doi.org/10.1021/bi973029x | |
Ansarullah, Lu Y, Holstein M, DeRuyter B, Rabinovitch A, Guo Z. 2013; 8(1):e53345; doi:10.1371/journal.pone.0053345. https://doi.org/10.1371/journal.pone.0053345 | |
Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev, 2001; 81(3):1269-304; doi:10.1152/ physrev.2001.81.3.1269. https://doi.org/10.1152/physrev.2001.81.3.1269 | |
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm J, 2016; 24(5):547-53; doi:10.1016/j. jsps.2015.03.013. https://doi.org/10.1016/j.jsps.2015.03.013 | |
Atanes P, Persaud SJ. GPCR targets in type 2 diabetes. GPCRs Struct Funct Drug Discov, 2019; (25)10:367-91; doi:10.1016/B978-0-12- 816228-6.00018-0. https://doi.org/10.1016/B978-0-12-816228-6.00018-0 | |
Bailey CJ. Could FFAR1 assist insulin secretion in type 2 diabetes? Lancet, 2012; 379(9824):1370-1; doi:10.1016/S0140-6736(12)60165-2. https://doi.org/10.1016/S0140-6736(12)60165-2 | |
Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu Rev Physiol, 2007; 69:201-20; doi:10.1146/annurev.physiol.69.031905.160308. https://doi.org/10.1146/annurev.physiol.69.031905.160308 | |
Banner CD, Goos-Nilsson A, Sjövall J, Gustafsson JÅ, Rafter JJ. A method for characterization of endogenous ligands to orphan receptors belonging to the steroid hormone receptor superfamily-isolation of progesterone from pregnancy plasma using progesterone receptor ligand-binding domain. Anal Biochem, 1992; 200:163-70; doi:10.1016/0003-2697(92)90293-G. https://doi.org/10.1016/0003-2697(92)90293-G | |
Bansal S, Chopra K. Distinct role of estrogen receptor-alpha and beta on postmenopausal diabetes-induced vascular dysfunction. Gen Comp Endocrinol, 2014; 206:51-9; doi:10.1016/j.ygcen.2014.06.013. https://doi.org/10.1016/j.ygcen.2014.06.013 | |
Baranowski M. Biological role of liver X receptors. J Physiol Pharmacol, 2008; 59:31-55. | |
Bardet PL, Horard B, Robinson-Rechavi M, Laudet V, Vanacker JM. Characterization of oestrogen receptors in zebrafish (Danio rerio). J Mol Endocrinol, 2002; 28(3):153-63; doi:10.1677/jme.0.0280153. https://doi.org/10.1677/jme.0.0280153 | |
Bauerle KT, Harris C. Glucocorticoids and diabetes mellitus. Mo Med, 2016; 113:378-83. | |
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov, 2009; doi:10.1038/ nrd2792. | |
Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes, 2013; 62:313-9; doi:10.2337/ db12-0905. https://doi.org/10.2337/db12-0905 | |
Bertilsson G, Heidrich J, Svensson K, Åsman M, Jendeberg L, Sydow-Bäckman M, Ohlsson R, Postlind H, Blomquist P, Berkenstam A. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA, 1998; doi:10.1073/ pnas.95.21.12208. https://doi.org/10.1073/pnas.95.21.12208 | |
Bhasin M, Raghava GPS. Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem, 2004; 279(22):23262-6; doi:10.1074/jbc.M401932200. https://doi.org/10.1074/jbc.M401932200 | |
Brent GA. Mechanisms of thyroid hormone action. J Clin Invest, 2012; doi:10.1172/JCI60047. https://doi.org/10.1172/JCI60047 | |
Brown MR, Laouteouet D, Delobel M, Villard O, Broca C, Bertrand G, Wojtusciszyn A, Dalle S, Ravier MA, Matveyenko AV, Costes S. The nuclear receptor REV-ERBα is implicated in the alteration of β-cell autophagy and survival under diabetogenic conditions. Cell Death Dis, 2022; 13:1-12; doi:10.1038/s41419-022-04767-z. https://doi.org/10.1038/s41419-022-04767-z | |
Brown OI, Bridge KI, Kearney MT. Nicotinamide adenosine dinucleotide phosphate oxidases in glucose homeostasis and diabetes-related endothelial cell dysfunction. Cells, 2021; 10:2315; doi:10.3390/ cells10092315. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001; doi:10.1038/414813a. https://doi.org/10.1038/414813a | |
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ, Perez DM. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev, 2013; doi:10.1124/ pr.112.006833. | |
Campbell SE, Febbraio MA. Effect of the ovarian hormones on GLUT4 expression and contraction-stimulated glucose uptake. Am J Physiol Endocrinol Metab, 2002; 282; doi:10.1152/ajpendo.00184.2001. https://doi.org/10.1152/ajpendo.00184.2001 | |
Camporez JPG, Jornayvaz FR, Petersen MC, Pesta D, Guigni BA, Serr J, Zhang D, Kahn M, Samuel VT, Jurczak MJ, Shulman GI. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology, 2013; doi:10.1210/en.2013-1191. https://doi.org/10.1210/en.2013-1191 | |
Carson-Jurica MA, Schrader WT, O'Malley BW. Steroid receptor family: structure and functions. Endocr Rev, 1990; doi:10.1210/ edrv-11-2-201. https://doi.org/10.1210/edrv-11-2-201 | |
Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev, 2010; doi:10.1210/er.2009-0007. https://doi.org/10.1210/er.2009-0007 | |
Cheung A, Kusari J, Jansen D, Bandyopadhyay D, Kusari A, Bryer-Ash M. Marked impairment of protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type 2 diabetes mellitus. J Lab Clin Med, 1999; doi:10.1016/S0022-2143(99)90115-4. https://doi.org/10.1016/S0022-2143(99)90115-4 | |
Chu C, Gao X, Li X, Zhang X, Ma R, Jia Y, Li D, Wang D, Xu F. Involvement of estrogen receptor-α in the activation of Nrf2-antioxidative signaling pathways by silibinin in pancreatic β-cells. Biomol Ther, 2020; 28:163-71; doi:10.4062/biomolther.2019.071. https://doi.org/10.4062/biomolther.2019.071 | |
Coller FA, Huggins CB. Effect of hyperthyroidism upon diabetes mellitus striking improvement in diabetes mellitus from thyroidectomy. Ann Surg, 1927; 86:877-84; doi:10.1097/00000658-192712000-00009. https://doi.org/10.1097/00000658-192712000-00009 | |
Cooper MS, Stewart PM. 11β-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J Clin Endocrinol Metab, 2009; doi:10.1210/ jc.2009-1412. https://doi.org/10.1210/mend.23.11.9999 | |
Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev, 2016; 37(1):3-15. | |
Delerive P, Furman C, Teissier E, Fruchart JC, Duriez P, Staels B. Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner. FEBS Lett, 2000; doi:10.1016/S0014-5793(00)01364-8. https://doi.org/10.1016/S0014-5793(00)01364-8 | |
De Sa PM, Qadir MMF, Mauvais-Jarvis F. 226-LB: elimination of the progesterone receptor in ß cells improves ß-cell function and glucose tolerance during pregnancy and diet-induced insulin resistance in female mice. Diabetes, 2021; 70:226-LB; doi:10.2337/db21-226-lb. https://doi.org/10.2337/db21-226-LB | |
Diamanti-Kandarakis E, Pappalou O, Kandaraki EA. The role of androgen excess on insulin sensitivity in women. Front Horm Res, 2019; 53:50-64; doi:10.1159/000494902. https://doi.org/10.1159/000494902 | |
Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B, 2015; doi:10.1016/j. apsb.2015.01.004. | |
Divakar S, Saravanan K, Karthikeyan P, Elancheran R, Kabilan S, Balasubramanian KK, Devi R, Kotoky J, Ramanathan M. Iminoenamine based novel androgen receptor antagonist exhibited anti-prostate cancer activity in androgen independent prostate cancer cells through inhibition of AKT pathway. Chem Biol Interact, 2017; doi:10.1016/j.cbi.2017.07.023. https://doi.org/10.1016/j.cbi.2017.07.023 | |
Dong B, Zhou Y, Wang W, Scott J, Kim KH, Sun Z, Guo Q, Lu Y, Gonzales NM, Wu H, Hartig SM, York RB, Yang F, Moore DD. Vitamin D receptor activation in liver macrophages ameliorates hepatic inflammation, steatosis, and insulin resistance in mice. Hepatology, 2020; 71:1559-74; doi:10.1002/hep.30937. https://doi.org/10.1002/hep.30937 | |
Donnelly D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br J Pharmacol, 2012; doi:10.1111/ j.1476-5381.2011.01687.x. | |
Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol, 2009; doi:10.1152/ japplphysiol.91397.2008. https://doi.org/10.1152/japplphysiol.91397.2008 | |
Duan H, Ning M, Chen X, Zou Q, Zhang L, Feng Y, Zhang L, Leng Y, Shen J. Design, synthesis, and antidiabetic activity of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carboxamide derivatives as potent and orally efficacious TGR5 agonists. J Med Chem, 2012; doi:10.1021/jm301071h. https://doi.org/10.1021/jm301071h | |
Duan H, Ning M, Zou Q, Ye Y, Feng Y, Zhang L, Leng Y, Shen J. Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. J Med Chem, 2015; doi:10.1021/jm500829b. https://doi.org/10.1021/jm500829b | |
Egner U. Structural analysis of the GR ligand-binding domain. Ernst Schering Res Found Workshop, 2002; doi:10.1007/978-3-662-04660-9_19. https://doi.org/10.1007/978-3-662-04660-9_19 | |
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol, 2018; doi:10.1186/s12933-018-0728-6. https://doi.org/10.1186/s12933-018-0728-6 | |
Escriva H, Delaunay F, Laudet V. Ligand binding and nuclear receptor evolution. BioEssays, 2000; doi:10.1002/1521- 1878(200008)22:8<717::AID-BIES5>3.0.CO;2-I. https://doi.org/10.1002/1521-1878(200008)22:8<717::AID-BIES5>3.0.CO;2-I | |
Esther Chan HW, Ashan B, Jayasekera P, Collier A, Ghosh S. A new class of drug for the management of type 2 diabetes: sodium glucose co-transporter inhibitors: "Glucuretics." Diabetes Metab Syndr Clin Res Rev, 2012; doi:10.1016/j.dsx.2012.08.003. https://doi.org/10.1016/j.dsx.2012.08.003 | |
Fatmawati S, Ersam T, Yu H, Zhang C, Jin F, Shimizu K. 20(S)- Ginsenoside Rh2 as aldose reductase inhibitor from Panax ginseng. Bioorg Med Chem Lett, 2014; doi:10.1016/j.bmcl.2014.08.009. https://doi.org/10.1016/j.bmcl.2014.08.009 | |
Fernandez EJ. Allosteric pathways in nuclear receptors- potential targets for drug design. Pharmacol Ther, 2018; doi:10.1016/j. pharmthera.2017.10.014. | |
Franco PJ, Li G, Wei LN. Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase. Mol Cell Endocrinol, 2003; doi:10.1016/S0303-7207(03)00254-5. https://doi.org/10.1016/S0303-7207(03)00254-5 | |
Fukuda S, Ohta T, Sakata S, Morinaga H, Ito M, Nakagawa Y, Tanaka M, Matsushita M. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT-551. Diabetes Obes Metab, 2010; doi:10.1111/j.1463-1326.2009.01162.x. https://doi.org/10.1111/j.1463-1326.2009.01162.x | |
Gadaleta RM, Magnani L. Nuclear receptors and chromatin: an inducible couple. J Mol Endocrinol, 2013; 52:R137-49; doi:10.1530/JME- 13-0170. https://doi.org/10.1530/JME-13-0170 | |
Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab, 2013; doi:10.1016/j.cmet.2013.08.005. https://doi.org/10.1016/j.cmet.2013.08.005 | |
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci, 2020; doi:10.3390/ijms21176275. https://doi.org/10.3390/ijms21176275 | |
Gao X, Nawaz Z. Progesterone receptors-animal models and cell signaling in breast cancer: role of steroid receptor coactivators and corepressors of progesterone receptors in breast cancer. Breast Cancer Res, 2002; 4; doi:10.1186/bcr449. https://doi.org/10.1186/bcr449 | |
Garg R, Adler GK. Role of mineralocorticoid receptor in insulin resistance. Curr Opin Endocrinol Diabetes Obes, 2012; 19:168-75; doi:10.1097/MED.0b013e3283533955. https://doi.org/10.1097/MED.0b013e3283533955 | |
Glass CK, Rose DW, Rosenfeld MG. Nuclear receptor coactivators. Curr Opin Cell Biol, 1997; doi:10.1016/S0955- 0674(97)80066-X. | |
Gottlieb PA. Type 1 diabetes. Endocrinol Metab Clin North Am, 2004; 33:2004; doi:10.1016/S0889-8529(03)00102-6. https://doi.org/10.1016/S0889-8529(03)00102-6 | |
Graham JD, Clarke CL. Physiological action of progesterone in target tissues*. Endocr Rev, 1997; 18:502-19; doi:10.1210/edrv.18.4.0308. https://doi.org/10.1210/edrv.18.4.0308 | |
Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, De Haan JB, Koulis C, El-Osta A, Andrews KL, Chin- Dusting JPF, Touyz RM, Wingler K, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation, 2013; doi:10.1161/ CIRCULATIONAHA.112.132159. https://doi.org/10.1161/CIRCULATIONAHA.112.132159 | |
Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature, 1986; doi:10.1038/320134a0. https://doi.org/10.1038/320134a0 | |
Guo D, Zhu Y, Sun H, Xu X, Zhang S, Hao Z, Wang G, Mu C, Ren H. Pharmacological activation of REV-ERBα represses LPS-induced microglial activation through the NF-κB pathway. Acta Pharmacol Sin, 2019; 40:26-34; doi:10.1038/s41401-018-0064-0. https://doi.org/10.1038/s41401-018-0064-0 | |
Guo DY, Li DW, Ning MM, Dang XY, Zhang LN, Zeng LM, Hu Y, Leng Y. Yhhu4488, a novel GPR40 agonist, promotes GLP-1 secretion and exerts anti-diabetic effect in rodent models. Biochem Biophys Res Commun, 2015; doi:10.1016/j.bbrc.2015.09.130. https://doi.org/10.1016/j.bbrc.2015.09.130 | |
Gupte M, Tousif S, Lemon JJ, Cora AT, Umbarkar P, Lal H. Isoform-specific role of GSK-3 in high fat diet induced obesity and glucose intolerance. Cells, 2022; 11:559; doi:10.3390/cells11030559. https://doi.org/10.3390/cells11030559 | |
Haase CL, Tybjerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. HDL cholesterol and risk of type 2 diabetes: a mendelian randomization study. Diabetes, 2015; 64:3328-33; doi:10.2337/db14-1603 https://doi.org/10.2337/db14-1603 | |
Haelens A, Tanner T, Denayer S, Callewaert L, Claessens F. The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res, 2007; doi:10.1158/0008-5472.CAN-06-1701 https://doi.org/10.1158/0008-5472.CAN-06-1701 | |
Hammer SS, Beli E, Kady N, Wang Q, Wood K, Lydic TA, Malek G, Saban DR, Wang XX, Hazra S, Levi M, Busik JV, Grant MB. The mechanism of diabetic retinopathy pathogenesis unifying key lipid regulators, sirtuin 1 and liver X receptor. EBioMedicine, 2017; 22:181-90; doi:10.1016/j.ebiom.2017.07.008 https://doi.org/10.1016/j.ebiom.2017.07.008 | |
Han Z, Hao X, Ma B, Zhu C. A series of pyrido[2,3-b[pyrazin-3(4 H)-one derivatives as aldose reductase inhibitors with antioxidant activity. Eur J Med Chem, 2016; doi:10.1016/j.ejmech.2016.05.036. https://doi.org/10.1016/j.ejmech.2016.05.036 | |
Hart SM. Modulation of nuclear receptor dependent transcription. Biol Res, 2002; doi:10.4067/S0716-97602002000200021. https://doi.org/10.4067/S0716-97602002000200021 | |
Haug CJ, Aukrust P, Haug E, Mørkrid L, Müller F, Frøland SS. Severe deficiency of 1,25-dihydroxyvitamin D3 in human immunodeficiency virus infection: association with immunological hyperactivity and only minor changes in calcium homeostasis. J Clin Endocrinol Metab, 1998; doi:10.1210/jcem.83.11.5270. https://doi.org/10.1210/jcem.83.11.5270 | |
Heaney RP. Vitamin D in health and disease. Clin J Am Soc Nephrol, 2008; 3:1535-41; doi:10.2215/CJN.01160308. https://doi.org/10.2215/CJN.01160308 | |
Heikkinen S, Auwerx J, Argmann CA. PPARgamma in human and mouse physiology. Biochim Biophys Acta, 2007; (8):999-1013. https://doi.org/10.1016/j.bbalip.2007.03.006 | |
Hirukawa H, Kaneto H, Shimoda M, Kimura T, Okauchi S, Obata A, Kohara K, Hamamoto S, Tawaramoto K, Hashiramoto M, Kaku K. Combination of DPP-4 inhibitor and PPARγ agonist exerts protective effects on pancreatic β-cells in diabetic db/db mice through the augmentation of IRS-2 expression. Mol Cell Endocrinol, 2015; 413:49-60; doi:10.1016/j. mce.2015.06.010 https://doi.org/10.1016/j.mce.2015.06.010 | |
Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature, 1985; 318(6047):635-41; doi:10.1038/318635a0. https://doi.org/10.1038/318635a0 | |
Holzer G, Markov G V., Laudet V. Evolution of nuclear receptors and ligand signaling: toward a soft key-lock model?. Curr Top Dev Biol, 2017; 125:1-38; doi:10.1016/bs.ctdb.2017.02.003. https://doi.org/10.1016/bs.ctdb.2017.02.003 | |
Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem, 2011; 286(15):12983-90; doi:10.1074/jbc.M110.215889. https://doi.org/10.1074/jbc.M110.215889 | |
Hotta N, Toyota T, Matsuoka K, Shigeta Y, Kikkawa R, Kaneko T, Takahashi A, Sugimura K, Koike Y, Ishii J, Sakamoto N. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care, 2001; (10):1776-82; doi:10.2337/ diacare.24.10.1776. https://doi.org/10.2337/diacare.24.10.1776 | |
Hughes KA, Webster SP, Walker BR. 11-Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors in type 2 diabetes mellitus and obesity. Expert Opin Investig Drugs, 2008; 17:481-96; doi:10.1517/13543784.17.4.481. https://doi.org/10.1517/13543784.17.4.481 | |
Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature, 2003; 422(6928):173-6; doi:10.1038/nature01478. https://doi.org/10.1038/nature01478 | |
Kador PF, Wyman M, Oates PJ. Aldose reductase, ocular diabetic complications and the development of topical Kinostat®. Prog Retin Eye Res, 2016; 54:1-29; doi:10.1016/j.preteyeres.2016.04.006. https://doi.org/10.1016/j.preteyeres.2016.04.006 | |
Kam RKT, Deng Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci, 2012; 2(1):11; doi:10.1186/2045-3701-2-11. https://doi.org/10.1186/2045-3701-2-11 | |
Kanatani Y, Usui I, Ishizuka K, Bukhari A, Fujisaka S, Urakaze M, Haruta T, Kishimoto T, Naka T, Kobayashi M. Effects of pioglitazone on suppressor of cytokine signaling 3 expression: potential mechanisms for its effects on insulin sensitivity and adiponectin expression. Diabetes, 2007; 56(3):795-803; doi:10.2337/db06-1039. https://doi.org/10.2337/db06-1039 | |
Kharroubi AT. Diabetes mellitus: the epidemic of the century. World J Diabetes, 2015; 6:850-867; doi:10.4239/wjd.v6.i6.850. https://doi.org/10.4239/wjd.v6.i6.850 | |
Khorasanizadeh S, Rastinejad F. Visualizing the architectures and interactions of nuclear receptors. Endocrinology, 2016; 157:4212-21; doi:10.1210/en.2016-1559. https://doi.org/10.1210/en.2016-1559 | |
Kim CS, Kim J, Lee YM, Sohn E, Kim JS. Esculetin, a coumarin derivative, inhibits aldose reductase activity in vitro and cataractogenesis in galactose-fed rats. Biomol Ther (Seoul), 2016; 24(2):178-83; doi:10.4062/ biomolther.2015.101. https://doi.org/10.4062/biomolther.2015.101 | |
Kim HY, Mohan S. Role and mechanisms of actions of thyroid hormone on the skeletal development. Bone Res, 2013; 1(2):146-61; doi:10.4248/BR201302004. https://doi.org/10.4248/BR201302004 | |
King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care, 1998; (9):1414-31; doi:10.2337/diacare.21.9.1414. https://doi.org/10.2337/diacare.21.9.1414 | |
Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB . Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol, 2000; (15):5479-89; doi:10.1128/mcb.20.15.5479-5489.2000. https://doi.org/10.1128/MCB.20.15.5479-5489.2000 | |
Klepsch V, Gerner RR, Klepsch S, Olson WJ, Tilg H, Moschen AR,. Nuclear orphan receptor NR2F6 as a safeguard against experimental murine colitis. Gut, 2018; doi:10.1136/gutjnl-2016-313466. https://doi.org/10.1136/gutjnl-2016-313466 | |
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear receptors regulate intestinal inflammation in the context of IBD. Front Immunol, 2019; (8):1434-44; doi:10.3389/fimmu.2019.01070. https://doi.org/10.3389/fimmu.2019.01070 | |
Kollerits B, Fliser D, Heid IM, Ritz E, Kronenberg F. Gender-specific association of adiponectin as a predictor of progression of chronic kidney disease: the mild to moderate kidney disease study. Kidney Int, 2007; doi:10.1038/sj.ki.5002191. https://doi.org/10.1038/sj.ki.5002191 | |
Lathion C, Michalik L, Wahli W. Physiological ligands of PPARs in inflammation and lipid homeostasis. Future Lipidol, 2006; 1(2):191-201; doi:10.2217/17460875.1.2.191. https://doi.org/10.2217/17460875.1.2.191 | |
Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D. Evolution of the nuclear receptor gene superfamily. EMBO J, 1992; (3):1003-13; doi:10.1002/j.1460-2075.1992.tb05139.x. https://doi.org/10.1002/j.1460-2075.1992.tb05139.x | |
Lee D V., Li D, Yan Q, Zhu Y, Goodwin B, Calle R, Brenner MB, Talukdar S. Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-Derived (hASC) adipocytes. PLoS One, 2014; 9(11):e111767; doi:10.1371/journal. pone.0111767. https://doi.org/10.1371/journal.pone.0111767 | |
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev, 2009; doi:10.1152/physrev.00010.2008. https://doi.org/10.1152/physrev.00010.2008 | |
Lei M, Liu Z, Guo J. The emerging role of vitamin D and vitamin D receptor in diabetic nephropathy. Biomed Res Int, 2020; 2020:4137268; doi:10.1155/2020/4137268. https://doi.org/10.1155/2020/4137268 | |
Leopold Wager CM, Arnett E, Schlesinger LS. Macrophage nuclear receptors: emerging key players in infectious diseases. PLoS Pathog, 2019; (3):e1007585; doi:10.1371/journal.ppat.1007585. https://doi.org/10.1371/journal.ppat.1007585 | |
Li J-X, Cummins CL. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat Rev Endocrinol, 2022; 18:1-18; doi:10.1038/s41574-022-00683-6. Li N, Li B, Brun T, Deffert-Delbouille C, Mahiout Z, Daali Y, Ma XJ, Krause KH, Maechler P. NADPH oxidase NOX2 defines a new antagonistic role for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion. Diabetes, 2012; (11):2842-50; doi:10.2337/ db12-0009. https://doi.org/10.2337/db12-0009 | |
Li SY, Zhao YL, Yang YF, Wang X, Nie M, Wu XY, Mao JF. Metabolic effects of testosterone replacement therapy in patients with type 2 diabetes mellitus or metabolic syndrome: a meta-analysis. Int J Endocrinol, 2020; 2020:4732021; doi:10.1155/2020/4732021. https://doi.org/10.1155/2020/4732021 | |
Ma Y, Wang SQ, Xu WR, Wang RL, Chou KC. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 2012; (6):e38546; doi:10.1371/journal.pone.0038546. https://doi.org/10.1371/journal.pone.0038546 | |
MacAulay K, Woodgett JR. Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opin Ther Targets, 2008; (10):1265-74; doi:10.1517/14728222.12.10.1265. https://doi.org/10.1517/14728222.12.10.1265 | |
Mahajan MA, Samuels HH. A new family of nuclear receptor coregulators that integrate nuclear receptor signaling through CREB-binding protein. Mol Cell Biol, 2000; (14):5048-63; doi:10.1128/mcb.20.14.5048- 5063.2000. https://doi.org/10.1128/MCB.20.14.5048-5063.2000 | |
Man Chu TS. The relationship between Type 2 diabetes mellitus and risk of prostate cancer: literature review and critical appraisal. J Diabetes Metab, 2018; doi:10.4172/2155-6156.1000787. https://doi.org/10.4172/2155-6156.1000787 | |
Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RMl. The nuclear receptor superfamily: the second decade. Cell, 1995; (6):835; doi:10.1016/0092-8674(95)90199-X. https://doi.org/10.1016/0092-8674(95)90199-X | |
Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Cañizo-Gómez FJ del. Update on the treatment of type 2 diabetes mellitus. World J Diabetes, 2016; (17):354; doi:10.4239/wjd.v7.i17.354. https://doi.org/10.4239/wjd.v7.i17.354 | |
Mark M, Ghyselinck NB, Chambon P. Function of retinoic acid receptors during embryonic development. Nucl Recept Signal, 2009; doi:10.1621/nrs.07002. https://doi.org/10.1621/nrs.07002 | |
di Martino O, Welch JS. Retinoic acid receptors in acute myeloid leukemia therapy. Cancers (Basel), 2019; (12):1915; doi:10.3390/ cancers11121915. https://doi.org/10.3390/cancers11121915 | |
Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, Zierath JR, Chibalin AV, Moller DE, Kharitonenkov A, Krook A. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev, 2011; (3):286-97; doi:10.1002/dmrr.1177. https://doi.org/10.1002/dmrr.1177 | |
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB, Galigniana MD. The nuclear receptor field: a historical overview and future challenges. Nucl Recept Res, 2018; 5:101320; doi:10.11131/2018/101320. https://doi.org/10.11131/2018/101320 | |
McKenna NJ, O'Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell, 2002; 5:101320; doi:10.1016/S0092-8674(02)00641-4. https://doi.org/10.1016/S0092-8674(02)00641-4 | |
Menuet A, Pellegrini E, Anglade I, Blaise O, Lauder V, Kah O, Pakdel F. Molecular characterization of three estrogen receptor forms in zebrafish: binding characteristics, transactivation properties, and tissue distributions. Biol Reprod, 2002; (6):1881-92; doi:10.1095/ biolreprod66.6.1881. https://doi.org/10.1095/biolreprod66.6.1881 | |
Mihály J, Gericke J, Aydemir G, Weiss K, Carlsen H, Blomhoff R, Garcia J, Rühl R. Reduced retinoid signaling in the skin after systemic retinoid-X receptor ligand treatment in mice with potential relevance for skin disorders. Dermatology, 2013; (4):304-11; doi:10.1159/000345496. https://doi.org/10.1159/000345496 | |
Mohammed Hussein SM, AbdElmageed RM. The relationship between type 2 diabetes mellitus and related thyroid diseases. Cureus, 2021; 13:e20697; doi:10.7759/cureus.20697. https://doi.org/10.7759/cureus.20697 | |
Morgan SA, Sherlock M, Gathercole LL, Lavery GG, Lenaghan C, Bujalska IJ, Laber D, Yu A, Convey G, Mayers R, Hegyi K, Sethi JK, Stewart PM, Smith DM, Tomlinson JW. 11β-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid- induced insulin resistance in skeletal muscle. Diabetes, 2009; (11):2506-15; doi:10.2337/db09-0525. https://doi.org/10.2337/db09-0525 | |
Morró M, Vilà L, Franckhauser S, Mallol C, Elias G, Ferré T, Molas M, Casana E, Rodó J, Pujol A, Téllez N, Bosch F, Casellas A. Vitamin D receptor overexpression in β-cells ameliorates diabetes in mice. Diabetes, 2020; 69:927-39; doi:10.2337/db19-0757. https://doi.org/10.2337/db19-0757 | |
Muñoz-Cueto JA, Burzawa-Gérard E, Kah O, Valotaire Y, Pakdel F. Cloning and sequencing of the gilthead sea bream estrogen receptor cDNA. DNA Seq, 1999; (2):75-84; doi:10.3109/10425179909008421. https://doi.org/10.3109/10425179909008421 | |
Navarro G, Allard C, Xu W, Mauvais-Jarvis F. The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity (Silver Spring), 2015; (4):713-9; doi:10.1002/oby.21033. https://doi.org/10.1002/oby.21033 | |
Navarro G, Xu W, Jacobson DA, Wicksteed B, Allard C, Zhang G, De Gendt K, Kim SH, Wu H, Zhang H, Verhoeven G, Katzenellenbogen JA, Mauvais-Jarvis F. Extranuclear actions of the androgen receptor enhance glucose-stimulated insulin secretion in the male. Cell Metab, 2016; 23:837-51; doi:10.1016/j.cmet.2016.03.015. https://doi.org/10.1016/j.cmet.2016.03.015 | |
Necela BM, Thompson EA. Pathophysiological roles of PPARγ in gastrointestinal epithelial cells. PPAR Res, 2008; doi:10.1155/2008/148687. https://doi.org/10.1155/2008/148687 | |
Nelson ER, Habibi HR. Estrogen receptor function and regulation in fish and other vertebrates. Gen Comp Endocrinol, 2013; 192:15-24; doi:10.1016/j.ygcen.2013.03.032. https://doi.org/10.1016/j.ygcen.2013.03.032 | |
Ning L, Lou X, Zhang F, Xu G. Nuclear receptors in the pathogenesis and management of inflammatory bowel disease. Mediators Inflamm, 2019; doi:10.1155/2019/2624941. https://doi.org/10.1155/2019/2624941 | |
Novac N, Heinzel T. Nuclear receptors: overview and classification. Curr Drug Targets Inflamm Allergy, 2004; (4):335-46; doi:10.2174/1568010042634541. https://doi.org/10.2174/1568010042634541 | |
Oliveira de Souza C, Sun X, Oh D. Metabolic functions of G protein-coupled receptors and β-arrestin-mediated signaling pathways in the pathophysiology of type 2 diabetes and obesity. Front Endocrinol (Lausanne), 2021; doi:10.3389/fendo.2021.715877. https://doi.org/10.3389/fendo.2021.715877 | |
Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O'Malley BW. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem, 1998; doi:10.1074/jbc.273.20.12101. https://doi.org/10.1074/jbc.273.20.12101 | |
Osmenda G, Matusik PT, Sliwa T, Czesnikiewicz-Guzik M, Skupien J, Ma?ecki MT, Siedlinski M. Nicotinamide adenine dinucleotide phosphate (nadph) oxidase p22phox subunit polymorphisms, systemic oxidative stress, endothelial dysfunction, and atherosclerosis in type 2 diabetes mellitus. Polish Arch Intern Med, 2021; 131:447-54; doi:10.20452/ pamw.15937. https://doi.org/10.20452/pamw.15937 | |
Pal M, Khan J, Kumar R, Surolia A, Gupta S. Testosterone supplementation improves insulin responsiveness in HFD fed male T2DM mice and potentiates insulin signaling in the skeletal muscle and C2C12 myocyte cell line. PLoS One, 2019; 14; doi:10.1371/journal.pone.0224162. https://doi.org/10.1371/journal.pone.0224162 | |
Patel SR, Skafar DF. Modulation of nuclear receptor activity by the F domain. Mol Cell Endocrinol, 2015; 3:298-305; doi:10.1016/j. mce.2015.07.009. https://doi.org/10.1016/j.mce.2015.07.009 | |
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem, 2012; doi:10.2174/156802612799436641. https://doi.org/10.2174/156802612799436641 | |
Petersmann A, Nauck M, Müller-Wieland D, Kerner W, Müller UA, Landgraf R, Nauck M, Freckmann G, Heinemann L, Schleicher E. Definition, classification and diagnostics of diabetes mellitus. J Lab Med, 2018; doi:10.1515/labmed-2018-0016. https://doi.org/10.1515/labmed-2018-0016 | |
Picard F, Wanatabe M, Schoonjans K, Lydon J, O'Malley BW, Auwerx J. Progesterone receptor knockout mice have an improved glucose homeostasis secondary to β-cell proliferation. Proc Natl Acad Sci U S A, 2002; 99:15644-8; doi:10.1073/pnas.202612199. https://doi.org/10.1073/pnas.202612199 | |
Pitasi CL, Liu J, Gausserès B, Pommier G, Delangre E, Armanet M, Cattan P, Mégarbane B, Hanak AS, Maouche K, Bailbé D, Portha B, Movassat J. Implication of glycogen synthase kinase 3 in diabetes-associated islet inflammation. J Endocrinol, 2020; 244:133-48; doi:10.1530/JOE-19- 0239. https://doi.org/10.1530/JOE-19-0239 | |
Porter BA, Ortiz MA, Bratslavsky G, Kotula L. Structure and function of the nuclear receptor superfamily and current targeted therapies of prostate cancer. Cancers (Basel), 2019; (12):1852; doi:10.3390/ cancers11121852. https://doi.org/10.3390/cancers11121852 | |
Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Burris LL, Khorasanizadeh S, Burris TP, Rastinejad F. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ. Nat Struct Mol Biol, 2007; doi:10.1038/nsmb1344. https://doi.org/10.1038/nsmb1344 | |
Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol, 2013; doi:10.1530/JME-13-0173. https://doi.org/10.1530/JME-13-0173 | |
Remedi MS, Nichols CG. KATP channels in the pancreas: hyperinsulinism and diabetes. Hyperinsulinism and diabetes. Elsevier, 2016; doi:10.1016/B978-0-12-802002-9.00008-X. https://doi.org/10.1016/B978-0-12-802002-9.00008-X | |
Ritter K, Buning C, Halland N, Pöverlein C, Schwink L. G protein-coupled receptor 119 (GPR119) agonists for the treatment of diabetes: recent progress and prevailing challenges. J Med Chem, 2016; doi:10.1021/acs.jmedchem.5b01198. https://doi.org/10.1021/acs.jmedchem.5b01198 | |
Robinson-Rechavi M, Garcia HE, Laudet V. The nuclear receptor superfamily. J Cell Sci, 2003; doi:10.1242/jcs.00247. https://doi.org/10.1242/jcs.00247 | |
Rocha S, Luísa Corvo M, Fernandes E, Freitas M. The emerging target protein tyrosine phosphatase 1B (PTP1B) for type 2 diabetes mellitus management. J Diabetes Clin Res, 2021; 3:99-105. https://doi.org/10.33696/diabetes.3.048 | |
Rosenstock J, Banarer S, Fonseca VA, Inzucchi SE, Sun W, Yao W, Hollis G, Flores R, Levy R, Williams WV, Seckl JR, Huber R. The 11-β-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care, 2010; doi:10.2337/dc09-2315. https://doi.org/10.2337/dc09-2315 | |
Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev, 2018; doi:10.1093/nutrit/nuy057 https://doi.org/10.1093/nutrit/nuy057 | |
Saito R, Suzuki S, Sasaki K. Pterin-7-carboxamides as a new class of aldose reductase inhibitors. Bioorganic Med Chem Lett, 2016; doi:10.1016/j.bmcl.2016.09.033. https://doi.org/10.1016/j.bmcl.2016.09.033 | |
Sancar G, Liu S, Gasser E, Alvarez JG, Moutos C, Kim K, van Zutphen T, Wang Y, Huddy TF, Ross B, Dai Y. FGF1 and insulin control lipolysis by convergent pathways. Cell Metab, 2022; 34:171-83; doi:10.1016/j.cmet.2021.12.004. https://doi.org/10.1016/j.cmet.2021.12.004 | |
Sawicki KT, Chang HC, Ardehali H. Role of heme in cardiovascular physiology and disease. J Am Heart Assoc, 2015; doi:10.1161/JAHA.114.001138. https://doi.org/10.1161/JAHA.114.001138 | |
Schäfer N, Lohmann C, Winnik S, Van Tits LJ, Miranda MX, Vergopoulos A, Ruschitzka F, Nussberger J, Berger S, Lüscher TF, Verrey F. Endothelialmineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur Heart J, 2013; 34:3515-24; doi:10.1093/eurheartj/eht095. https://doi.org/10.1093/eurheartj/eht095 | |
Schroeder AC, Privalsky ML. Thyroid hormones, T3 and T4, in the brain. Front Endocrinol (Lausanne), 2014; doi:10.3389/ fendo.2014.00040. https://doi.org/10.3389/fendo.2014.00040 | |
Schulman IG. Nuclear receptors as drug targets for metabolic disease. Adv Drug Deliv Rev, 2010; 62:1307-15; doi:10.1016/j.addr.2010.07.002. https://doi.org/10.1016/j.addr.2010.07.002 | |
Schupp M, Lazar MA. Endogenous ligands for nuclear receptors: digging deeper. J Biol Chem, 2010; doi:10.1074/jbc.R110.182451. https://doi.org/10.1074/jbc.R110.182451 | |
Skafar DF, Zhao C. The multifunctional estrogen receptor-alpha F domain. Endocrine, 2008; doi:10.1007/s12020-008-9054-1. https://doi.org/10.1007/s12020-008-9054-1 | |
Solt LA, Griffin PR, Burris TP. Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics. Curr Opin Lipidol, 2010; doi:10.1097/ MOL.0b013e328338ca18. | |
Soriano S, Ropero AB, Alonso-Magdalena P, Ripoll C, Quesada I, Gassner B, Kuhn M, Gustafsson JA, Nadal A. Rapid regulation of KATP channel activity by 17β-estradiol in pancreatic β-cells involves the estrogen receptor β and the atrial natriuretic peptide receptor. Mol Endocrinol, 2009; 23:1973-82; doi:10.1210/me.2009-0287. https://doi.org/10.1210/me.2009-0287 | |
Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev, 2009; doi:10.1152/physrev.00011.2008. https://doi.org/10.1152/physrev.00011.2008 | |
Suh JM, Jonker JW, Ahmadian M, Goetz R, Lackey D, Osborn O, Huang Z, Liu W, Yoshihara E, van Dijk TH, Havinga R. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 2014; doi:10.1038/nature13540. https://doi.org/10.1038/nature13540 | |
Szeto V, Chen NH, Feng ZP, Sun HS. The role of KATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin, 2018; 39:683-94; doi:10.1038/aps.2018.10. https://doi.org/10.1038/aps.2018.10 | |
Takada I, Makishima M. Control of inflammatory bowel disease and colorectal cancer by synthetic vitamin D receptor ligands. Curr Med Chem, 2016; doi:10.2174/0929867323666161202145509. https://doi.org/10.2174/0929867323666161202145509 | |
Tanaka Y, Deluca HF. Role of 1,25 dihydroxyvitamin D3 in maintaining serum phosphorus and curing rickets. Proc Natl Acad Sci U S A, 1974; doi:10.1073/pnas.71.4.1040. https://doi.org/10.1073/pnas.71.4.1040 | |
Teixeira P de F dos S, dos Santos PB, Pazos-Moura CC. The role of thyroid hormone in metabolism and metabolic syndrome. Ther Adv Endocrinol Metab, 2020; 11:204201882091786; doi:10.1177/2042018820917869. https://doi.org/10.1177/2042018820917869 | |
Teske KA, Yu O, Arnold LA. Inhibitors for the vitamin D receptor-coregulator interaction. Vitam. Horm., 2016; doi:10.1016/bs.vh.2015.10.002. https://doi.org/10.1016/bs.vh.2015.10.002 | |
Tetel MJ, Jung S, Carbajo P, Ladtkow T, Skafar DF, Edwards DP. Hinge and amino-terminal sequences contribute to solution dimerization of human progesterone receptor. Mol Endocrinol, 1997; doi:10.1210/ mend.11.8.9963. https://doi.org/10.1210/mend.11.8.9963 | |
Thompson EA. PPARγ physiology and pathology in gastrointestinal epithelial cells. Mol Cells, 2007; 24:167-76. | |
Tiwari K, Kumar D. Recent classification of diabetes mellitus. Int J Innov Sci Technol, 2018; doi:10.22270/ijist.v3i4.24. https://doi.org/10.22270/ijist.v3i4.24 | |
Uppenberg J, Svensson C, Jaki M, Bertilsson G, Jendeberg L, Berkenstam A. Crystal structure of the ligand binding domain of the human nuclear receptor PPARγ. J Biol Chem, 1998; doi:10.1074/jbc.273.47.31108. https://doi.org/10.1074/jbc.273.47.31108 | |
van der Vaart M, Schaaf MJM. Naturally occurring C-terminal splice variants of nuclear receptors. Nucl Recept Signal, 2009; doi:10.1621/ nrs.07007. https://doi.org/10.1621/nrs.07007 | |
Vieira E, Marroquí L, Batista TM, Caballero-Garrido E, Carneiro EM, Boschero AC, Nadal A, Quesada I. The clock gene Rev-erbα regulates pancreatic β-cell function: modulation by leptin and high-fat diet. Endocrinology, 2012; 153:592-601; doi:10.1210/en.2011-1595. https://doi.org/10.1210/en.2011-1595 | |
Wamil M, Seckl JR. Inhibition of 11ß-hydroxysteroid dehydrogenase type 1 as a promising therapeutic target. Drug Discov Today, 2007; 12:504-20; doi:10.1016/j.drudis.2007.06.001. https://doi.org/10.1016/j.drudis.2007.06.001 | |
Wang C. The relationship between type 2 diabetes mellitus and related thyroid diseases. J Diabetes Res, 2013; 2013; doi:10.1155/2013/390534. https://doi.org/10.1155/2013/390534 | |
Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell, 1999; doi:10.1016/S1097-2765(00)80348-2. https://doi.org/10.1016/S1097-2765(00)80348-2 | |
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006; doi:10.1038/ nature04330. https://doi.org/10.1038/nature04330 | |
Weatherman R V., Fletterick RJ, Scanlan TS. Nuclear-receptor ligands and ligand-binding domains. Annu Rev Biochem, 1999; doi:10.1146/annurev.biochem.68.1.559. https://doi.org/10.1146/annurev.biochem.68.1.559 | |
Wei J, Tang Q, Liu L, Bin J. Combination of peroxisome proliferator-activated receptor α/γ agonists may benefit type 2 diabetes patients with coronary artery disease through inhibition of inflammatory cytokine secretion. Exp Ther Med, 2013; doi:10.3892/etm.2013.891. https://doi.org/10.3892/etm.2013.891 | |
Wei Z, Yoshihara E, He N, Hah N, Fan W, Pinto AFM, Huddy T, Wang Y, Ross B, Estepa G, Dai Y, Ding N, Sherman MH, Fang S, Zhao X, Liddle C, Atkins AR, Yu RT, Downes M, Evans RM. Vitamin D Switches BAF Complexes to protect β cells. Cell, 2018; 173:1135-49.e15; doi:10.1016/j.cell.2018.04.013. https://doi.org/10.1016/j.cell.2018.04.013 | |
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: a structural perspective. Protein Sci, 2018; doi:10.1002/ pro.3496. | |
Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes, 2006; doi:10.2337/db05-1435. https://doi.org/10.2337/db05-1435 | |
Wilding JPH. PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes Metab, 2012; doi:10.1111/ j.1463-1326.2012.01601.x. | |
Xu Z, Wu Y, Wang F, Li X, Wang P, Li Y, Wu J, Li Y, Jiang T, Pan X, Zhang X, Xie L, Xiao J, Liu Y. Fibroblast growth factor 1 ameliorates diabetes-induced liver injury by reducing cellular stress and restoring autophagy. Front Pharmacol, 2020; 11:52; doi:10.3389/fphar.2020.00052. https://doi.org/10.3389/fphar.2020.00052 | |
Yamaguchi AV, Costanzo PR, Peuchot VA, Knoblovits P. Testosterone replacement therapy and the risk of hypoglycemia. Case Rep Endocrinol, 2019; 2019; doi:10.1155/2019/9616125. https://doi.org/10.1155/2019/9616125 | |
Yao QM, Wang B, An XF, Zhang JA, Ding L. Testosterone level and risk of type 2 diabetes in men: a systematic review and meta-analysis. Endocr Connect, 2018; 7:220-31; doi:10.1530/EC-17-0253. https://doi.org/10.1530/EC-17-0253 | |
Ye L, Li YL, Mellström K, Mellin C, Bladh LG, Koehler K, Garg N, Garcia Collazo AM, Litten C, Husman B, Persson K, Ljunggren J, Grover G, Sleph PG, George R, Malm J. Thyroid receptor ligands. 1. Agonist ligands selective for the thyroid receptor β1. J Med Chem, 2003; doi:10.1021/jm021080f. https://doi.org/10.1021/jm021080f | |
Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng, 2010; doi:10.4061/2010/218142. https://doi.org/10.4061/2010/218142 | |
Zapata-Sudo G, Nunes IK da C, Araujo JSC, da Silva JS, Trachez MM, da Silva TF, da Costa FP, Sudo RT, Barreiro EJ, Lima LM. Synthesis, solubility, plasma stability, and pharmacological evaluation of novel sulfonylhydrazones designed as anti-diabetic agents. Drug Des Devel Ther, 2016; doi:10.2147/DDDT.S108327. https://doi.org/10.2147/DDDT.S108327 | |
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The orphan nuclear receptor 4A1: a potential new therapeutic target for metabolic diseases. J Diabetes Res, 2018; doi:10.1155/2018/9363461. https://doi.org/10.1155/2018/9363461 | |
Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, Gibbs RA, Weinstock G, Wheeler DA. Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res, 2004; doi:10.1101/gr.2160004. https://doi.org/10.1101/gr.2160004 | |
Zheng F, Guan Y. Thiazolidinediones: a novel class of drugs for the prevention of diabetic nephropathy? Kidney Int, 2007; doi:10.1038/ sj.ki.5002557. | |
Zhu C. Aldose reductase inhibitors as potential therapeutic drugs of diabetic complications. In: Oguntibeju O (Ed.). Diabetes mellitus- insights and perspectives, Intech Open, 2013; doi:10.5772/54642. https://doi.org/10.5772/54642 | |
Zieleniak A, Wójcik M, Wo?niak LA. Structure and physiological functions of the human peroxisome proliferator-activated receptor γ. Arch Immunol Ther Exp (Warsz), 2008; doi:10.1007/s00005-008-0037-y. https://doi.org/10.1007/s00005-008-0037-y | |
Zuo H, Wan Y. Nuclear receptors in skeletal homeostasis. Curr Top Dev Biol, 2017; doi:10.1016/bs.ctdb.2017.01.002. https://doi.org/10.1016/bs.ctdb.2017.01.002 |
0 Absract views 1 PDF Downloads 1 Total views
By author names
By article title