The potential effects of isoflavones on nuclear receptor modulation in bone remodeling: A review

Haryati Ahmad Hairi Nor Hidayah Mustafa Putri Ayu Jayusman Ahmad Nazrun Shuid   

Open Access   

Published:  Feb 25, 2023

DOI: 10.7324/JAPS.2023.126975
Abstract

Isoflavones are plant-based compounds that act as phytoestrogens by mimicking the action of estrogen. Osteoblasts and osteoclasts are the key cells for bone remodeling, a process that includes bone proliferation, differentiation, deposition, and resorption. Studies have demonstrated that isoflavones, a class of flavonoids found almost exclusively in soybeans, could prevent bone loss. Recent findings revealed that isoflavones could activate nuclear receptors (NRs) and regulate bone formation and resorption processes. This current research discussed the principal actions of isoflavones mediated by NRs on bone remodeling such as steroid receptors (estrogen receptor, estrogen-related receptor, and androgen receptor) and metabolic receptors including peroxisome proliferator-activated receptor-γ. Isoflavones modulate osteogenesis by fine-tuning physiological responses on NR sensors and their transcriptional networks. Hence, this present review will dive deep into the use of several isoflavones as potential osteoporosis treatment through NR-controlling gene regulation.


Keyword:      Isoflavones nuclear receptor bone remodeling bone formation bone resorption


Citation:

Hairi HA, Mustafa NH, Jayusman PA, Shuid AN. The potential effects of isoflavones on nuclear receptor modulation in bone remodeling: A review. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.126975

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr, 2021; 27:1-27. https://doi.org/10.1080/10408398.2021.1946006

Ahsan W. The journey of thiazolidinediones as modulators of PPARs for the management of diabetes: a current perspective. Curr Pharm Des, 2019; 25(23):2540-54. https://doi.org/10.2174/1381612825666190716094852

Ajdžanovic V, Filipovic B, Miljic D, Mijatovic S, Maksimovic- Ivanic D, Miler M, Živanovic J, Miloševic V. Prostate cancer metastasis and soy isoflavones: a dogfight over a bone. EXCLI J, 2019; 18:106.

Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T. PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Investig, 2004; 113(6):846-55. https://doi.org/10.1172/JCI200419900

Almeida M, Iyer S, Martin-Millan M, Bartell SM, Han L, Ambrogini E, Onal M, Xiong J, Weinstein RS, Jilka RL, O'Brien CA. Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Investig, 2012; 123(1):394-404. https://doi.org/10.1172/JCI65910

Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev, 2017; 97(1):135-87. https://doi.org/10.1152/physrev.00033.2015

Anbalagan M, Huderson B, Murphy L, Rowan BG. Post-translational modifications of nuclear receptors and human disease. Nucl Recept Signal, 2012; 10:e001. https://doi.org/10.1621/nrs.10001

Bae S, Lee MJ, Mun SH, Giannopoulou EG, Yong-Gonzalez V, Cross JR, Murata K, Giguère V, van der Meulen M, Park-Min KH. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα. J Clin Invest, 2017; 127(7):2555-68. https://doi.org/10.1172/JCI89935

Bao L, Zou SE, Zhang SF. Dose-dependent effects of daidzein in regulating bone formation through estrogen receptors and peroxisome proliferator-activated receptor γ. Zhong xi yi jie he xue bao Chin J Integr Med, 2011; 9(2):165-72. https://doi.org/10.3736/jcim20110209

Bara?ska A, B?aszczuk A, Kanadys W, Baczewska B, J?drych M, Wawryk-Gawda E, Polz-Dacewicz M. Effects of soy protein containing of isoflavones and isoflavones extract on plasma lipid profile in postmenopausal women as a potential prevention factor in cardiovascular diseases: systematic review and meta-analysis of randomized controlled trials. Nutrients, 2021; 13(8):2531. https://doi.org/10.3390/nu13082531

Bara?ska A, Kanadys W, Bogdan M, St?pie? E, Barczy?ski B, K?ak A, Augustynowicz A, Szajnik M, Religioni U. The role of soy isoflavones in the prevention of bone loss in postmenopausal omen: a systematic review with meta-analysis of randomized controlled trials. J Clin Med, 2022; 11(16):4676. https://doi.org/10.3390/jcm11164676

Beekmann K, de Haan LH, Actis-Goretta L, Houtman R, van Bladeren PJ, Rietjens IM. The effect of glucuronidation on isoflavone induced estrogen receptor (ER) α and ERβ mediated coregulator interactions. J Steroid Biochem Mol Biol, 2015; 154:245-53. https://doi.org/10.1016/j.jsbmb.2015.09.002

Bellavia D, Dimarco E, Costa V, Carina V, De Luca A, Raimondi L, Fini M, Gentile C, Caradonna F, Giavaresi G. Flavonoids in bone erosive diseases: perspectives in osteoporosis treatment. Trends Endocrinol Metab, 2021; 32(2):76-94. https://doi.org/10.1016/j.tem.2020.11.007

Bianchi VE, Bresciani E, Meanti R, Rizzi L, Omeljaniuk RJ, Torsello A. The role of androgens in women's health and wellbeing. Pharmacol Res, 2021; 171:105758. https://doi.org/10.1016/j.phrs.2021.105758

Bonnelye E. Estrogen receptor related receptor alpha (ERRα) in skeletal tissues. Endocrinol Metab Syndr, 2016; 5(4). https://doi.org/10.4172/2161-1017.1000244

Bonnelye E. Energy metabolism in bone tumors: fuel selection and adaptation. In: Bone sarcomas and bone metastases-from bench to bedside, Academic Press, Cambridge, MA, pp 337-55, 2022. Bord S, Horner A, Beavan S, Compston J. Estrogen receptors α and β are differentially expressed in developing human bone. J Clin Endocrinol Metab, 2001; 86(5):2309-14. https://doi.org/10.1210/jcem.86.5.7513

Burr DB, Phipps R. Selective estrogen receptor modulators (SERMs). In: Takahashi HE, Burr DB, Yamamoto N (eds.). Osteoporotic fracture and systemic skeletal disorders, Springer, Singapore, pp 399-411, 2002. https://doi.org/10.1007/978-981-16-5613-2_26

Cao J, Ding K, Pan G, Rosario R, Su Y, Bao Y, Zhou H, Xu J, McGee Lawrence ME, Hamrick MW, Isales CM. Deletion of PPARγ in mesenchymal lineage cells protects against aging-induced cortical bone loss in mice. J Gerontol A, 2020; 75(5):826-34. https://doi.org/10.1093/gerona/glaa049

Cao J, Ou G, Yang N, Ding K, Kream BE, Hamrick MW, Isales CM, Shi XM. Impact of targeted PPARγ disruption on bone remodeling. Mol Cell Endocrino, 2015; 410:27-34. https://doi.org/10.1016/j.mce.2015.01.045

Cao L, Wang J, Zhang Y, Tian F, Wang C. Osteoprotective effects of flavonoids: evidence from in vivo and in vitro studies. Mol Med Rep, 2022; 25(6):1-9. https://doi.org/10.3892/mmr.2022.12716

Casaburi I, Chimento A, De Luca A, Nocito M, Sculco S, Avena P, Trotta F, Rago V, Sirianni R, Pezzi V. Cholesterol as an endogenous ERRα agonist: a new perspective to cancer treatment. Front Endocrinol (Lausanne), 2018; 9:525. https://doi.org/10.3389/fendo.2018.00525

Cepeda SB, Sandoval MJ, Crescitelli MC, Rauschemberger MB, Massheimer VL. The isoflavone genistein enhances osteoblastogenesis: signaling pathways involved. J Physiol Biochem, 2020; 76(1):99-110 https://doi.org/10.1007/s13105-019-00722-3

Cha C, Lee SJ, Hong H, Choi YY, Chung MS. Adverse effects of adjuvant tamoxifen treatment on bone mineral density in premenopausal breast cancer patients: a systematic review and meta-analysis. 2021; e12500. https://doi.org/10.1200/JCO.2021.39.15_suppl.e12500

Chang Y, Choue R. Plasma pharmacokinetics and urinary excretion of isoflavones after ingestion of soy products with different aglycone/glucoside ratios in South Korean women. Nut Res Pract, 2013; 7(5):393-9. https://doi.org/10.4162/nrp.2013.7.5.393

Chang C, Yeh S, Lee SO, Chang TM. Androgen receptor (AR) pathophysiological roles in androgen related diseases in skin, metabolism syndrome, bone/muscle and neuron/immune systems: lessons learned from mice lacking AR in specific cells. Nucl Recept Signal, 2013; 11(1):nrs- 11001. https://doi.org/10.1621/nrs.11001

Chen L, Cao H, Huang Q, Xiao J, Teng H. Absorption, metabolism and bioavailability of flavonoids: a review. Crit Rev Food Sci Nutr, 2022a; 62(28):7730-42. https://doi.org/10.1080/10408398.2021.1917508

Chen YJ, Chan DC, Lan KC, Wang CC, Chen CM, Chao SC, Tsai KS, Yang RS, Liu SH. PPARγ is involved in the hyperglycemia-induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages. J Orthop Res, 2015; 33(3):373-81. https://doi.org/10.1002/jor.22770

Chen LR, Chen KH. Utilization of isoflavones in soybeans for women with menopausal syndrome: an overview. Int J Mol Sci, 2021; 22(6):3212. https://doi.org/10.3390/ijms22063212

Chen H, Fan W, He H, Huang F. PGC-1: a key regulator in bone homeostasis. J Bone Miner Metab, 2022b; 40(1):1-8. https://doi.org/10.1007/s00774-021-01263-w

Chen JF, Lin PW, Tsai YR, Yang YC, Kang HY. Androgens and androgen receptor actions on bone health and disease: from androgen deficiency to androgen therapy. Cells, 2019; 8(11):1318. https://doi.org/10.3390/cells8111318

Chen L, Teng H, Xie Z, Cao H, Cheang WS, Skalicka-Woniak K, Georgiev MI, Xiao J. Modifications of dietary flavonoids towards improved bioactivity: an update on structure-activity relationship. Crit Rev Food Sci Nutr, 2018; 58(4):513-27. https://doi.org/10.1080/10408398.2016.1196334

Chinetti G, Neels JG. Roles of nuclear receptors in vascular calcification. Int J Mol Sci, 2021; 22(12):6491. https://doi.org/10.3390/ijms22126491

Cho SK, Kim H, Lee J, Nam E, Lee S, Choi YY, Sung YK. Effectiveness of bazedoxifene in preventing glucocorticoid-induced bone loss in rheumatoid arthritis patients. Arthritis Res Ther, 2021; 23(1):1-2. https://doi.org/10.1186/s13075-021-02564-1

Clarke BL. Effects of estrogens and SERMs on bone metabolism: clinical aspects. In: Osteoporosis, Humana, Cham, Switzerland, pp 239-57, 2020. https://doi.org/10.1007/978-3-319-69287-6_12

Climent E, Benaiges D, Pedro-Botet J. Hydrophilic or lipophilic statins? Front Cardiovasc Med, 2021; 8:687585. https://doi.org/10.3389/fcvm.2021.687585

Cummings SR, Ensrud K, Delmas PD, LaCroix AZ, Vukicevic S, Reid DM, Goldstein S, Sriram U, Lee A, Thompson J, Armstrong RA, Thompson DD, Powles T, Zanchetta J, Kendler D, Neven P, Eastell R. PEARL study investigators. Lasofoxifene in postmenopausal women with osteoporosis. N Engl J Med, 2010; 362(8):686-96. https://doi.org/10.1056/NEJMoa0808692

Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Löwik CW. Peroxisome proliferator-activated receptor gamma (PPARgamma) as a molecular target for the soy phytoestrogen genistein. J Biol Chem, 2003; 278(2):962-7. https://doi.org/10.1074/jbc.M209483200

Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev, 2016; 37(1):3.

de Vera IMS. Advances in orphan nuclear receptor pharmacology: a new era in drug discovery. ACS Pharmacol Transl Sci, 2018; 1(2):134-7. https://doi.org/10.1021/acsptsci.8b00029

do Prado FG, Pagnoncelli MG, de Melo Pereira GV, Karp SG, Soccol CR. Fermented soy products and their potential health benefits: a review. Microorganisms, 2022; 10(8):1606. https://doi.org/10.3390/microorganisms10081606

Ebrahimi MN, Khaksari M, Sepehri G, Karam GA, Raji- Amirhasani A, Azizian H. The effects of alone and combination tamoxifen, raloxifene and estrogen on lipid profile and atherogenic index of ovariectomized type 2 diabetic rats. Life Sci, 2020; 263:118573. https://doi.org/10.1016/j.lfs.2020.118573

Elsayed DH, Helmy SA, Dessouki AA, El-Nahla AM, Abdelrazek HM, El-Hak HN. Influence of genistein and diadizine on regularity of estrous cycle in cyclic female Wistar rat: interaction with estradiol receptors and vascular endothelial growth factor. Open Vet J, 2022; 12(5):639-48. https://doi.org/10.5455/OVJ.2022.v12.i5.8

Erguc EI, Tascioglu-Aliyev A, Entezari B, Gurer-Orhan H. The role of biotransformation in the activity of endocrine disruptors. Curr Drug Met, 2021; 22(8):628-44. https://doi.org/10.2174/1389200222666210603114617

Fadheel QJ, Naser RT. Assessment of simvastatin effect and compare it's with combination of calcium plus vitamin D3 in postmenopausal women with osteoporosis. Med J Ahl al-Bayt Univ, 2022; 1(1):21-37.

Fan Y, Wang M, Li Z, Jiang H, Shi J, Shi X, Liu S, Zhao J, Kong L, Zhang W, Ma L. Intake of soy, soy isoflavones and soy protein and risk of cancer incidence and mortality. Front Nutr, 2022; 9:847421. https://doi.org/10.3389/fnut.2022.847421

Feng C, Xu Z, Tang X, Cao H, Zhang G, Tan J. Estrogen-related receptor α: a significant regulator and promising target in bone homeostasis and bone metastasis. Molecules, 2022; 27(13):3976. https://doi.org/10.3390/molecules27133976

Frigo DE, Bondesson M, Williams C. Nuclear receptors: from molecular mechanisms to therapeutics. Essays Biochem, 2021; 65(6):847- 56. https://doi.org/10.1042/EBC20210020

Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol, 2019; 116:135-70. https://doi.org/10.1016/bs.apcsb.2019.01.001

Gallet M, Vanacker JM. ERR receptors as potential targets in osteoporosis. Trends Endocrinol Metab, 2010; 21(10):637-41. https://doi.org/10.1016/j.tem.2010.06.008

Gaya P, Medina M, Sánchez-Jiménez A, Landete JM. Phytoestrogen metabolism by adult human gut microbiota. Molecules, 2016; 21(8):1034. https://doi.org/10.3390/molecules21081034

Genant HK. Bazedoxifene: a new selective estrogen receptor modulator for postmenopausal osteoporosis. Menopause Int, 2011; 17(2):44-9. https://doi.org/10.1258/mi.2011.011011

Goher SS, Elgendy B. Structure-based design of estrogen-related receptors modulators. In: Badr MZ (ed.). Nuclear receptors, Springer, Cham, Switzerland, pp 79-109, 2021. https://doi.org/10.1007/978-3-030-78315-0_5

Goldstein SR. Selective estrogen receptor modulators and bone health. Climacteric, 2022; 25(1):56-9. https://doi.org/10.1080/13697137.2021.1936485

Gong D, Sun Y, Guo C, Sheu TJ, Zhai W, Zheng J, Chang C. Androgen receptor decreases renal cell carcinoma bone metastases via suppressing the osteolytic formation through altering a novel circEXOC7 regulatory axis. Clin Transl Med, 2021; 11(3):e353. https://doi.org/10.1002/ctm2.353

Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Camp JV. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev, 2015; 47(2):175-90. https://doi.org/10.3109/03602532.2014.1003649

Gopi S, Lukose B, Naganathan AN. Diverse native ensembles dictate the differential functional responses of nuclear receptor ligand-binding domains. J Phys Chem B, 2021; 125(14):3546-55. https://doi.org/10.1021/acs.jpcb.1c00972

Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications - a review. Nutr J, 2014; 13:17 https://doi.org/10.1186/1475-2891-13-17

Guo L, Chen K, Yuan J, Huang P, Xu X, Li C, Qian N, Qi J, Shao Z, Deng L, He C. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC. J Cell Physiol, 2019; 234(1):581-94. https://doi.org/10.1002/jcp.26788

Gustafsson JA. Historical overview of nuclear receptors. J Steroid Biochem Mol Biol, 2016; 157:3-6. https://doi.org/10.1016/j.jsbmb.2015.03.004

Haffner-Luntzer M, Kovtun A, Lackner I, Mödinger Y, Hacker S, Liedert A, Tuckermann J, Ignatius A. Estrogen receptor α- (ERα), but not ERβ-signaling, is crucially involved in mechanostimulation of bone fracture healing by whole-body vibration. Bone, 2018; 110:11-20. https://doi.org/10.1016/j.bone.2018.01.017

Hsieh CJ, Hsu YL, Huang YF, Tsai EM. Molecular mechanisms of anticancer effects of phytoestrogens in breast cancer. Curr Protein Pept Sci, 2018; 19(3):323-32. https://doi.org/10.2174/1389203718666170111121255

Huang WY, Sun PM. Estrogen receptor-associated receptor α and peroxisome proliferator-activated receptor γ in metabolism and disease. Mol Med Rep, 2021; 23(2):1. https://doi.org/10.3892/mmr.2020.11795

Huss JM, Garbacz WG, Xie W. Constitutive activities of estrogen-related receptors: transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta Mol Basis Dis, 2015; 1852(9):1912-27. https://doi.org/10.1016/j.bbadis.2015.06.016

Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev, 2013; 93(2):481-523. https://doi.org/10.1152/physrev.00008.2012

Islam MA, Bekele R, Vanden Berg JH, Kuswanti Y, Thapa O, Soltani S, van Leeuwen FR, Rietjens IM, Murk AJ. Deconjugation of soy isoflavone glucuronides needed for estrogenic activity. Toxicol In Vitro, 2015; 29(4):706-15. https://doi.org/10.1016/j.tiv.2015.01.013

Jardí F, Kim N, Laurent MR, Khalil R, Deboel L, Schollaert D, van Lenthe GH, Decallonne B, Carmeliet G, Claessens F, Vanderschueren D. Androgen receptor in neurons slows age-related cortical thinning in male mice. J Bone Miner Res, 2019; 34(3):508-19. https://doi.org/10.1002/jbmr.3625

Jiang Y, Gong P, Madak-Erdogan Z, Martin T, Jeyakumar M, Carlson K, Khan I, Smillie TJ, Chittiboyina AG, Rotte SC, Helferich WG, Katzenellenbogen JA, Katzenellenbogen BS. Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens. FASEB J, 2013; 27(11):4406. https://doi.org/10.1096/fj.13-234617

Jiang X, Randhawa SB, Kagan R. Estrogen and estrogen analogs for prevention and treatment of osteoporosis. In: Marcus and feldman's osteoporosis, Academic Press, Cambridge, MA, pp 1711-9, 2021. https://doi.org/10.1016/B978-0-12-813073-5.00073-3

Jin Z, Li X, Wan Y. Minireview: nuclear receptor regulation of osteoclast and bone remodeling. Mol Endocrinol, 2015; 29(2):172-86. https://doi.org/10.1210/me.2014-1316

Jin X, Sun J, Yu B, Wang Y, Sun WJ, Yang J, Huang SH, Xie WL. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor-dependent MEK/ERK and PI3K/Akt activation. Nutr Res, 2017; 42:20-30. https://doi.org/10.1016/j.nutres.2017.04.009

Kammerer M, Gutzwiller S, Stauffer D, Delhon I, Seltenmeyer Y, Fournier B. Estrogen receptor α (ERα) and estrogen related receptor α (ERRα) are both transcriptional regulators of the Runx2-I isoform. Mol Cell Endocrinol, 2013; 369(1-2):150-60. https://doi.org/10.1016/j.mce.2013.01.024

Kang F, Yi Q, Gu P, Dong Y, Zhang Z, Zhang L, Bai Y. Controlled growth factor delivery system with osteogenic-angiogenic coupling effect for bone regeneration. J Orthop Translat, 2021; 31:110-25. https://doi.org/10.1016/j.jot.2021.11.004

Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, Nakamura T, Fukuda T, Yoshimura K, Yoshizawa T, Aihara KI. Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci, 2003; 100(16):9416-21. https://doi.org/10.1073/pnas.1533500100

Kenkre JS, Bassett JHD. The bone remodelling cycle. Ann Clin Biochem, 2018; 55(3):308-27. https://doi.org/10.1177/0004563218759371

Khalid AB, Krum SA. Estrogen receptors alpha and beta in bone. Bone, 2016; 87:130-5. https://doi.org/10.1016/j.bone.2016.03.016

Khan MZ, Uzair M, Nazli A, Chen JZ. An overview on estrogen receptors signaling and its ligands in breast cancer. Eur J Med Chem, 2022; 8:114658. https://doi.org/10.1016/j.ejmech.2022.114658

Kilu W, Merk D, Steinhilber D, Proschak E, Heering J. Heterodimer formation with retinoic acid receptor RXRα modulates coactivator recruitment by peroxisome proliferator-activated receptor PPARγ. J Biol Chem, 2021; 297(1):100814. https://doi.org/10.1016/j.jbc.2021.100814

Kim IS. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants, 2021; 10(7):1064. https://doi.org/10.3390/antiox10071064

Kim HJ, Kim BK, Ohk B, Yoon HJ, Kang WY, Cho S, Seong SJ, Lee HW, Yoon YR. Estrogen-related receptor γ negatively regulates osteoclastogenesis and protects against inflammatory bone loss. J Cell Physiol, 2019; 234(2):1659-70. https://doi.org/10.1002/jcp.27035

Kim B, Koh J. Coupling factors involved in preserving bone balance. CellMol Life Sci, 2019; 76(7):1243-53. https://doi.org/10.1007/s00018-018-2981-y

Kim YH, Nam GE, Cho KH, Choi YS, Kim SM, Han BD, Han KD, Lee KS, Park CH, Kim DH. Low bone mineral density is associated with dyslipidemia in South Korean men: the 2008-2010 Korean national health and nutrition examination survey. Endocr J, 2013; 60(10):1179-89. https://doi.org/10.1507/endocrj.EJ13-0224

Kim H, Oh B, Park-Min KH. Regulation of osteoclast differentiation and activity by lipid metabolism. Cells, 2021; 10(1):89. https://doi.org/10.3390/cells10010089

Kim SI, Park SH, Na W, Shin YC, Oh MS, Sim YE, Zheng Y, Kim AH, Kang IJ, Kang YH. Dietary collagen hydrolysates retard estrogen deficiency-induced bone loss through blocking osteoclastic activation and enhancing osteoblastic matrix mineralization. Biomedicines, 2022; 10(6):1382. https://doi.org/10.3390/biomedicines10061382

Kitamura K, Erlangga JS, Tsukamoto S, Sakamoto Y, Mabashi- Asazuma H, Iida K. Daidzein promotes the expression of oxidative phosphorylation- and fatty acid oxidation-related genes via an estrogen-related receptor α pathway to decrease lipid accumulation in muscle cells. J Nutr Biochem, 2020; 77:108315. https://doi.org/10.1016/j.jnutbio.2019.108315

Kretzschmar G, Zierau O, Wober J, Tischer S, Metz P, Vollmer G. Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein. J Steroid Biochem Mol Biol, 2010; 118:1-6. https://doi.org/10.1016/j.jsbmb.2009.08.005

K?ížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules, 2019; 24(6):1076. https://doi.org/10.3390/molecules24061076

Kuwahara M, Akasaki Y, Goto N, Kurakazu I, Sueishi T, Toya M, Uchida T, Tsutsui T, Hirose R, Tsushima H, Nakashima Y. Fluvastatin promotes chondrogenic differentiation of adipose-derived mesenchymal stem cells by inducing bone morphogenetic protein 2. BMC Pharmacol Toxicol, 2022; 23(1):1-9. https://doi.org/10.1186/s40360-022-00600-7

Laily WN, Wati DA, Ayu RN, Pratiwi AR. The correlation between consumption levels of isoflavones and fiber sources with HbA1c levels in patients with type 2 diabetes mellitus at Dr. H. Bob Bazar Hospital in South Lampung. J Kedokteran dan Kesehatan: Publikasi Ilmiah Fakultas Kedokteran Univ Sriwijaya. 2022; 9(2). https://doi.org/10.32539/JKK.V9I2.17014

Lan KC, Wei KT, Lin PW, Lin CC, Won PL, Liu YF, Chen YJ, Cheng BH, Chu TM, Chen JF, Huang KE, Chang CE, Kang HY. Targeted activation of androgen receptor signaling in the periosteum improves bone fracture repair. Cell Death Dis, 2022; 13(2):1-3. https://doi.org/10.1038/s41419-022-04595-1

Lee HR, Jeung EB, Cho MH, Kim TH, Leung PC, Choi KC. Molecular mechanism (s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors. J Cell Mol Med, 2013; 17(1):1. https://doi.org/10.1111/j.1582-4934.2012.01649.x

Lee HS, Lee TH, Lee DH, Yun BS, Lee KW, Kim JS, Goo YT, Kim JH. Evaluation of estrogen receptor agonistic activity of medicinal herbs using organization for economic cooperation and development transactivation assay with rat liver S9 fraction. J Med Food, 2021; 24(12):1285-92. https://doi.org/10.1089/jmf.2021.K.0119

Lee HS, Park T. Nuclear receptor and VEGF pathways for gene-blood lead interactions, on bone mineral density, in Korean smokers. PLoS One, 2018; 13(3):e0193323. https://doi.org/10.1371/journal.pone.0193323

Levine PM, Garabedian MJ, Kirshenbaum K. Targeting the androgen receptor with steroid conjugates. J Med Chem, 2014; 57(20):8224-37 https://doi.org/10.1021/jm500101h

Li Y, Jin D, Xie W, Wen L, Chen W, Xu J, Ding J, Ren D. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr Stem Cell Res Ther, 2018; 13(3):185-92. https://doi.org/10.2174/1574888X12666171012141908

Li X, Ning L, Ma J, Xie Z, Zhao X, Wang G, Wan X, Qiu P, Yao T, Wang H, Fan S, Wan S. The PPAR-γ antagonist T007 inhibits RANKL-induced osteoclastogenesis and counteracts OVX-induced bone loss in mice. Cell Commun Signal, 2019a; 17(1):136. https://doi.org/10.1186/s12964-019-0442-3

Li R, Robinson M, Ding X, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Genistein: a focus on several neurodegenerative diseases. J Food Biochem, 2022a; 46(7):e14155. https://doi.org/10.1111/jfbc.14155

Li F, Song C, Zhang Y, Wu D. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Acta Biochim Biophys Sin (Shanghai), 2022b; 54(1):1-13. https://doi.org/10.3724/abbs.2021001

Li XL, Sui L, Lin FH, Lian Y, Ai LZ, Zhang Y. Differential effects of genistein and 8-prenylgenistein on reproductive tissues in

immature female mice. Pharm Biol, 2019b; 57(1):226-30. https://doi.org/10.1080/13880209.2019.1590422

Li Y, Zhang R, Ren M, Liu H, Yang M. Experimental study on the effects of simvastatin in reversing the femoral metaphyseal defects induced by sodium valproate in normal and ovariectomized rats. Heliyon, 2022c; 8(9):e10480. https://doi.org/10.1016/j.heliyon.2022.e10480

Lin HF, Liao KF, Chang CM, Lin CL, Lai SW, Hsu CY. Correlation of the tamoxifen use with the increased risk of deep vein thrombosis and pulmonary embolism in elderly women with breast cancer: a case-control study. Medicine, 2018; 97(51):e12842. https://doi.org/10.1097/MD.0000000000012842

Liu C, Feng T, Zhu N, Liu P, Han X, Chen M, Wang X, Li N, Li Y, Xu Y, Si S. Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Sci Rep, 2015; 5(1):1-3. https://doi.org/10.1038/srep09530

Lombardi G, Delvin E. Micro-RNA: a future approach to personalized diagnosis of bone diseases. Calcif Tissue Int, 2022; 19:1-7. https://doi.org/10.1007/s00223-022-00959-z

Ma X, Wang D, Zhao W, Xu L. Deciphering the roles of PPARγ in adipocytes via dynamic change of transcription complex. Front Endocrinol, 2018; 9:473. https://doi.org/10.3389/fendo.2018.00473

Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting edge endogenous promoting and exogenous driven strategies for bone regeneration. Int J Mol Sci, 2021; 22(14):7724. https://doi.org/10.3390/ijms22147724

Mahmoud AM, Martin IK, Schlicht MJ, Nonn L, Bosland MC. Differential effects of the isoflavone genistein on androgen receptor expression and cell proliferation comparing prostate cancer cells with mutant and wild type androgen receptor. Cancer Res, 2011; 71(8_ Supplement):1864. https://doi.org/10.1158/1538-7445.AM2011-1864

Makar S, Saha T, Swetha R, Gutti G, Kumar A, Singh SK. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. Bioorg Chem, 2020; 94:103380. https://doi.org/10.1016/j.bioorg.2019.103380

Maldonado-Rojas W, Salinas-Torres J, Olivero-Verbel J. Identification of potential human protein targets for soybean isoflavones. J Braz Chem Soc, 2021; 32:767-76. https://doi.org/10.21577/0103-5053.20200228

Manayi A. Soybeans and phytoestrogen rich foods (Genistein, Daidzein) against cancer. In: Nutraceuticals and cancer signaling, Springer, Cham, Switzerland, pp 419-49, 2021. https://doi.org/10.1007/978-3-030-74035-1_16

Marciano DP, Kuruvilla DS, Boregowda SV, Asteian A, Hughes TS, Garcia-Ordonez R, Corzo CA, Khan TM, Novick SJ, Park H, Kojetin DJ. Pharmacological repression of PPARγ promotes osteogenesis. Nat Commun, 2015; 6(1):1-7. https://doi.org/10.1038/ncomms8443

Martinkovich S, Shah D, Planey SL, Arnott JA. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging, 2014; 9:1437. https://doi.org/10.2147/CIA.S66690

Mayo B, Vázquez L, Flórez AB. Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients, 2019; 11(9):2231. https://doi.org/10.3390/nu11092231

Mbachu OC, Howell C, Simmler C, Malca Garcia GR, Skowron KJ, Dong H, Ellis SG, Hitzman RT, Hajirahimkhan A, Chen SN, Nikolic D, Moore TW, Vollmer G, Pauli GF, Bolton JL, Dietz BM. SAR study on estrogen receptor α/β activity of (iso)flavonoids: importance of prenylation, C-ring (un)saturation, and hydroxyl substituents. J Agric Food Chem, 2020; 68(39):10651-63. https://doi.org/10.1021/acs.jafc.0c03526

Mehedintu C, Carp-Veliscu A, Edu A, Plotogea M, Petca A, Andreescu CV, Secara D, Dumitrascu M, Rotaru AM. Non-hormonal management for menopause. Rom J Med Pract, 2021; 16(6):82. https://doi.org/10.37897/RJMP.2021.S6.17

Melville KM, Kelly NH, Khan SA, Schimenti JC, Ross FP, Main RP, van der Meulen MC. Female mice lacking estrogen receptor-alpha in osteoblasts have compromised bone mass and strength. J Bone Miner Res, 2014; 29(2):370-9. https://doi.org/10.1002/jbmr.2082

Melville KM, Kelly NH, Surita G, Buchalter DB, Schimenti JC, Main RP, Ross FP, van der Meulen MC. Effects of deletion of ERα in osteoblast-lineage cells on bone mass and adaptation to mechanical loading differ in female and male mice. J Bone Miner Res, 2015; 30(8):1468-80. https://doi.org/10.1002/jbmr.2488

Ming LG, Ge BF, Wang MG, Chen KM. Comparison between 8-prenylnarigenin and narigenin concerning their activities on promotion of rat bone marrow stromal cells' osteogenic differentiation in vitro. Cell Prolif, 2012; 45:508-15. https://doi.org/10.1111/j.1365-2184.2012.00844.x

Morito K, Aomori T, Hirose T, Kinjo J, Hasegawa J, Ogawa S, Inoue S, Muramatsu M, Masamune Y. Interaction of phytoestrogens with estrogen receptors α and β (II). Biol Pharm Bull, 2002; 25(1):48-52. https://doi.org/10.1248/bpb.25.48

Murphy C, Deplazes E, Cranfield CG, Garcia A. The role of structure and biophysical properties in the pleiotropic effects of statins. Int J Mol Sci, 2020; 21(22):8745. https://doi.org/10.3390/ijms21228745

Muruganandan S, Ionescu AM, Sinal CJ. At the crossroads of the adipocyte and osteoclast differentiation programs: future therapeutic perspectives. Int J Mol Sci, 2020; 21(7):2277. https://doi.org/10.3390/ijms21072277

Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future J Pharm Sci, 2021; 7(1):1-3. https://doi.org/10.1186/s43094-020-00161-8

Nagai N, Ogata F, Otake H, Nakazawa Y, Kawasaki N. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int J Nanomedicine, 2018; 13:5215. https://doi.org/10.2147/IJN.S173216

Nicks KM, Fujita K, Fraser D, McGregor U, Drake MT, McGee- Lawrence ME, Westendorf JJ, Monroe DG, Khosla S. Deletion of estrogen receptor beta in osteoprogenitor cells increases trabecular but not cortical bone mass in female mice. J Bone Miner Res, 2016; 31(3):606-14. https://doi.org/10.1002/jbmr.2723

Nishide Y, Tadaishi M, Kobori M, Tousen Y, Kato M, Inada M, Miyaura C, Ishimi Y. Possible role of S-equol on bone loss via amelioration of inflammatory indices in ovariectomized mice. J Clin Biochem Nutr, 2013; 53(1):41-8. https://doi.org/10.3164/jcbn.12-123

Notini AJ, McManus JF, Moore A, Bouxsein M, Jimenez M, Chiu WS, Glatt V, Kream BE, Handelsman DJ, Morris HA, Zajac JD, Davey RA. Osteoblast deletion of exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice. J Bone Miner Res, 2007; 22(3):347-56. https://doi.org/10.1359/jbmr.061117

Palaniappan M, Nguyen L, Grimm SL, Xi Y, Xia Z, Li W, Coarfa C. The genomic landscape of estrogen receptor α binding sites in mouse mammary gland. PLoS One, 2019; 14(8):e0220311. https://doi.org/10.1371/journal.pone.0220311

Palomer X, Barroso E, Pizarro-Delgado J, Peña L, Botteri G, Zarei M, Aguilar D, Montori-Grau M, Vázquez-Carrera M. PPARβ/δ: a key therapeutic target in metabolic disorders. Int J Mol Sci, 2018; 19(3):913. https://doi.org/10.3390/ijms19030913

Papageorgiou L, Shalzi L, Pierouli K, Papakonstantinou E, Manias S, Dragoumani K, Nicolaides NC, Giannakakis A, Bacopoulou F, Chrousos GP, Eliopoulos E. An updated evolutionary study of the nuclear receptor protein family. World Acad Sci J, 2021; 3(6):1-8. https://doi.org/10.3892/wasj.2021.136

Park K, Ju WC, Yeo JH, Kim JY, Seo HS, Uchida Y, Cho Y. Increased OPG/RANKL ratio in the conditioned medium of soybean-treated osteoblasts suppresses RANKL-induced osteoclast differentiation. Int J Mol Med, 2014; 33(1):178-84. https://doi.org/10.3892/ijmm.2013.1557

Pawlowski JW, Martin BR, McCabe GP, McCabe L, Jackson GS, Peacock M, Barnes S, Weaver CM. Impact of equol-producing capacity and soy-isoflavone profiles of supplements on bone calcium retention in postmenopausal women: a randomized crossover trial. Am J Clin Nutr, 2015; 102(3):695-703. https://doi.org/10.3945/ajcn.114.093906

Pinkerton JV, Thomas S. Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Mol, 2014; 142:142-54. https://doi.org/10.1016/j.jsbmb.2013.12.011

Puranik NV, Srivastava P, Bhatt G, John Mary DJ, Limaye AM, Sivaraman J. Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach. Sci Rep, 2019; 9(1):1. https://doi.org/10.1038/s41598-019-43768-5

Rana K, Davey RA, Zajac JD. Human androgen deficiency: insights gained from androgen receptor knockout mouse models. Asian J Androl, 2014; 16(2):169-77. https://doi.org/10.4103/1008-682X.122590

Ranhotra, HS. The estrogen-related receptors in metabolism and cancer: newer insights. J Recept Signal Transduct Res, 2018; 38(2):95-100. https://doi.org/10.1080/10799893.2018.1456552

Rocha RF, Rodrigues T, Menegatti AC, Bernardes GJ, Terenzi H. The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B activity. Bioorg Chem, 2020; 100:103927. https://doi.org/10.1016/j.bioorg.2020.103927

Rosati L, Falvo S, Chieffi Baccari G, Santillo A, Di Fiore MM. The aromatase-estrogen system in the testes of non-mammalian vertebrates. Animals, 2021; 11(6):1763. https://doi.org/10.3390/ani11061763

Russell PK, Clarke MV, Skinner JP, Pang TP, Zajac JD, Davey RA. Identification of gene pathways altered by deletion of the androgen receptor specifically in mineralizing osteoblasts and osteocytes in mice. J Mol Endocrinol, 2012; 49(1):1. https://doi.org/10.1530/JME-12-0014

ES, Atkin SL. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutr Metab Cardiovasc Dis, 2018; 28(7):691-7. https://doi.org/10.1016/j.numecd.2018.03.007

Sebo ZL, Rodeheffer MS. Testosterone metabolites differentially regulate obesogenesis and fat distribution. Mol Metab, 2021; 44:101141. https://doi.org/10.1016/j.molmet.2020.101141

Sims NA, Clément-Lacroix P, Minet D, Fraslon-Vanhulle C, Gaillard-Kelly M, Resche-Rigon M, Baron R. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Investig, 2003; 111:1319-27. https://doi.org/10.1172/JCI200317246

Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-β in bone remodeling in females but not in males. Bone, 2002; 30(1):18-25. https://doi.org/10.1016/S8756-3282(01)00643-3

Sinnesael M, Claessens F, Laurent M, Dubois V, Boonen S, Deboel L, Vanderschueren D. Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: evidence from targeted AR disruption in mouse osteocytes. J Bone Miner Res, 2012; 12:2535-43. https://doi.org/10.1002/jbmr.1713

Sinnesael M, Jardi F, Deboel L, Laurent MR, Dubois V, Zajac JD, Davey RA, Carmeliet G, Claessens F, Vanderschueren D. The androgen receptor has no direct antiresorptive actions in mouse osteoclasts. Mol Cell Endocrinol, 2015; 411:198-206. https://doi.org/10.1016/j.mce.2015.04.030

Sivo?ová MK, Kaplán P, Tatarková Z, Lichardusová L, Dušenka R, Jure?eková J. Androgen receptor and soy isoflavones in prostate cancer. Mol Clin Oncol, 2019; 10(2):191-204.

Slana? O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol, 2021; 17(3):307-21. https://doi.org/10.1080/17425255.2021.1865310

Solomon ZJ, Mirabal JR, Mazur DJ, Kohn TP, Lipshultz LI, Pastuszak AW. Selective androgen receptor modulators: current knowledge and clinical applications. Sex Med Rev, 2019; 7(1):84-94. https://doi.org/10.1016/j.sxmr.2018.09.006

Stanis?awska IJ, Figat R, Kiss AK, Bobrowska-Korczak B. Essential elements and isoflavonoids in the prevention of prostate cancer. Nutrients, 2022; 14(6):1225. https://doi.org/10.3390/nu14061225

Suetsugi M, Su L, Karlsberg K, Yuan YC, Chen S. Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Mol Cancer Res, 2003; 1(13):981-91.

Tanida T. Molecular dynamics of estrogen-related receptors and their regulatory proteins: roles in transcriptional control for endocrine and metabolic signaling. Anat Sci Int, 2022; 97:15-29. https://doi.org/10.1007/s12565-021-00634-7

Terkawi MA, Matsumae G, Shimizu T, Takahashi D, Kadoya K, Iwasaki N. Interplay between inflammation and pathological bone resorption: insights into recent mechanisms and pathways in related diseases for future perspectives. Int J Mol Sci, 2022; 23(3):1786. https://doi.org/10.3390/ijms23031786

Tomlinson B, Chan P, Lam CW. An overview of alogliptin+ pioglitazone for the treatment of type 2 diabetes. Expert Opin Pharmacother, 2022; 23(1):29-42. https://doi.org/10.1080/14656566.2021.1985465

Tousen Y, Ishiwata H, Ishimi Y, Ikegami S. Equol, a metabolite of daidzein, is more efficient than daidzein for bone formation in growing female rats. Phytother Res, 2015; 29(9):1349-54. https://doi.org/10.1002/ptr.5387

Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the biological activity and mechanism of xenoestrogens and phytoestrogens in cancers: emerging methods and concepts. Int J Mol Sci, 2021; 22(16):8798. https://doi.org/10.3390/ijms22168798

Wang L, Nanayakkara G, Yang Q, Tan H, Drummer C, Sun Y, Shao Y, Fu H, Cueto R, Shan H, Bottiglieri T. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol, 2017; 10(1):1-41. https://doi.org/10.1186/s13045-017-0526-8

Wang H, Wang J. Estrogen-related receptor alpha interacts cooperatively with peroxisome proliferator-activated receptor-gamma coactivator-1alpha to regulate osteocalcin gene expression. Cell Biol Int, 2013; 37(11):1259-65. https://doi.org/10.1002/cbin.10148

Wang J, Xu J, Wang B, Shu FR, Chen K, Mi MT. Equol promotes rat osteoblast proliferation and differentiation through activating estrogen receptor. Genet Mol Res, 2014; 13(3):5055-63. https://doi.org/10.4238/2014.July.4.21

Wei W, Schwaid AG, Wang X, Wang X, Chen S, Chu Q, Saghatelian A, Wan Y. Ligand activation of ERRα by cholesterol mediates statin and bisphosphonate effects. Cell Metab, 2016; 23(3):479-91. https://doi.org/10.1016/j.cmet.2015.12.010

Wei W, Wan Y. Thiazolidinediones on PPARγ: the roles in bone remodeling. PPAR Res, 2011; 2011:867180. https://doi.org/10.1155/2011/867180

Weivoda MM, Chew CK, Monroe DG, Farr JN, Atkinson EJ, Geske JR, Eckhardt B, Thicke B, Ruan M, Tweed AJ, McCready LK. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun, 2020; 11(1):1-3. https://doi.org/10.1038/s41467-019-14003-6

Wu GJ, Chen JT, Cherng YG, Chang CC, Liu SH, Chen RM. Genistein improves bone healing via triggering estrogen receptor alpha-mediated expressions of osteogenesis-associated genes and consequent maturation of osteoblasts. J Agric Food Chem, 2020; 68(39):10639-50. https://doi.org/10.1021/acs.jafc.0c02830

Wu J, Henning P, Sjögren K, Koskela A, Tuukkanen J, Movérare- Skrtic S, Ohlsson C. The androgen receptor is required for maintenance of bone mass in adult male mice. Mol Cell Endocrinol, 2019; 479:159-69. https://doi.org/10.1016/j.mce.2018.10.008

Xie Y, Tian Y, Zhang Y, Zhang Z, Chen R, Li M, Tang J, Bian J, Li Z, Xu X. Overview of the development of selective androgen receptor modulators (SARMs) as pharmacological treatment for osteoporosis (1998-2021). Eur J Med Chem, 2022; 12:114119. https://doi.org/10.1016/j.ejmech.2022.114119

Yang Y, Liu G, Zhang Y, Xu G, Yi X, Liang J, Zhao C, Liang J, Ma C, Ye Y, Yu M, Qu X. Association between bone mineral density, bone turnover markers, and serum cholesterol levels in type 2 diabetes. Front Endocrinol (Lausanne), 2018; 9:646. https://doi.org/10.3389/fendo.2018.00646

Yang D, Wan Y. Molecular determinants for the polarization of macrophage and osteoclast. Semin Immunopathol, 2019; 41(5):551-63. https://doi.org/10.1007/s00281-019-00754-3

Zhang L, Liu Q, Zeng X, Gao W, Niu Y, Ma X, Xie H, Zhou X, Yu W, Xu G. Association of dyslipidaemia with osteoporosis in postmenopausal women. J Int Med Res, 2021; 49(3):300060521999555. https://doi.org/10.1177/0300060521999555

Zhang Y, Zhou LP, Li XL, Zhao YJ, Ho MX, Qiu ZC, Zhao DF, Mok DK, Shi Q, Wang YJ, Wong MS. 8-Prenylgenistein, a prenylated genistein derivative, exerted tissue selective osteoprotective effects in ovariectomized mice. Oncotarget, 2018; 9(36):24221-36. https://doi.org/10.18632/oncotarget.24823

Zheng J, Brion MJ, Kemp JP, Warrington NM, Borges MC, Hemani G, Richardson TG, Rasheed H, Qiao Z, Haycock P, Ala-Korpela M, Davey Smith G, Tobias JH, Evans DM. The effect of plasma lipids and lipid-lowering interventions on bone mineral density: a mendelian randomization study. J Bone Miner Res, 2020; 35(7):1224-35. https://doi.org/10.1002/jbmr.3989

Zheng X, Lee SK, Chun OK. Soy isoflavones and osteoporotic bone loss: a review with an emphasis on modulation of bone remodeling. J Med Food, 2016; 19(1):1-4. https://doi.org/10.1089/jmf.2015.0045

Zhou T, Gai Z, Gao X, Li L. The potential mechanism of exercise combined with natural extracts to prevent and treat postmenopausal osteoporosis. J Healthc Eng, 2021; 2021:2852661. https://doi.org/10.1155/2021/2852661

Zou W, Rohatgi N, Chen TH, Schilling J, Abu-Amer Y, Teitelbaum SL. PPAR-γ regulates pharmacological but not physiological or pathological osteoclast formation. Nat Med, 2016; 22(11):1203-5. https://doi.org/10.1038/nm.4208

Zuo H, Wan Y. Nuclear receptors in skeletal homeostasis. Curr Top Dev Biol, 2017; 125:71-107. https://doi.org/10.1016/bs.ctdb.2017.01.002

Article Metrics

0 Absract views 5 PDF Downloads 5 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required