Emerging corticosteroid resistance: Need for customized medication based on pharmacogenomics profiling

Navakanth Raju Ramayanam Rajeshan Nanda Amarnath Mohan Kumar Ramasamy Thangavel Mahalingam Vijayakumar   

Open Access   

Published:  Jan 10, 2023

DOI: 10.7324/JAPS.2023.90044
Abstract

Most of the prescribed drugs for inflammatory illnesses are corticosteroids. Since the majority of patients obtain maximum remission with corticosteroid treatment, glucocorticoids seem to have been the bedrock of treating inflammatory disorders for decades. The clinical signs of illness and harmful impacts of glucocorticoid therapy are presently most often standardized for the first manifestation and relapse of inflammatory disorders. Still, there is significant interindividual variance in the glucocorticoid treatment response. The principles of corticosteroids and the pharmacodynamics of steroids in diverse inflammatory disorders are discussed in this study. The significant interindividual heterogeneity in glucocorticoid response, however, need not be explained by these processes. Prior research has shown that genetic variables might significantly impact a patient’s and dynamic pharmacokinetic characteristics. As a result, pharmacogenetics may play an important role in customized medication for individuals suffering from inflammatory illnesses. The significance of gene variants on glucocorticoid responsiveness and steroid-related hazards in inflammatory disorders is still unknown. Although the evidence is limited, the results of this research imply that pharmacogenetics may improve glucocorticoid therapy individualization. To make an overall conclusion on the genetic impact of variants on glucocorticoid related hazards and eventually adopt pharmacogenetics in medical practice, bigger cohorts of patients with inflammatory illnesses are required.


Keyword:     Corticosteroids inflammatory diseases pharmacogenetics pharmacodynamics personalized medicine polymorphism


Citation:

Ramayanam NR, Vijayakumar TM, Rajeshan NA. Emerging corticosteroid resistance: Need for customized medication based on pharmacogenomics profiling. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.90044

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Barnes PJ. Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol, 2010; 120:76-85. https://doi.org/10.1016/j.jsbmb.2010.02.018

Beck IME, Berghe W Vanden, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev, 2009; 30:830-82. https://doi.org/10.1210/er.2009-0013

Bryda EC. The mighty mouse: the impact of rodents on advances in biomedical research. Mo Med, 2013; 110(3):207-11.

Buttgereit F, Burmester GR, Straub RH, Seibel MJ, Zhou H. Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis Rheum, 2011; 63:1-9. https://doi.org/10.1002/art.30070

Castro-Vale I, Durães C, van Rossum EFC, Staufenbiel SM, Severo M, Lemos MC, Carvalho D. The glucocorticoid receptor gene (Nr3c1) 9β snp is associated with posttraumatic stress disorder. Healthcare, 2021; 9:1-11. https://doi.org/10.3390/healthcare9020173

de Iudicibus S, Franca R, Martelossi S, Ventura A, Decorti G. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease. World J Gastroenterol, 2011; 17:1095-108. https://doi.org/10.3748/wjg.v17.i9.1095

Desmet SJ, De Bosscher K. Glucocorticoid receptors: finding the middle ground. J Clin Invest, 2017; 127:1136-45. https://doi.org/10.1172/JCI88886

Duma D, Jewell CM, Cidlowski JA. Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J Steroid Biochem Mol Biol, 2006; 102:11-21. https://doi.org/10.1016/j.jsbmb.2006.09.009

El-Fayoumi R, Hagras M, Abozenadaha A, Bawazir W, Shinawi T. Association between NR3C1 gene polymorphisms and toxicity induced by glucocorticoids therapy in Saudi children with acute lymphoblastic leukemia. Asian Pac J Cancer Prev, 2018; 19:1415-23.

Floyd MD, Gervasini G, Masica AL, Mayo G, George AL, Bhat K, Kim RB, Wilkinson GR. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics, 2003; 13:595-606. https://doi.org/10.1097/00008571-200310000-00003

Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr Rev, 2018; 39:519-48. https://doi.org/10.1210/er.2018-00097

Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci, 2019; 20:1-31. https://doi.org/10.3390/ijms20236008

Kemp MW, Newnham JP, Challis JG, Jobe AH, Stock SJ. The clinical use of corticosteroids in pregnancy. Hum Reprod Update, 2016; 22:240-59. https://doi.org/10.1093/humupd/dmv047

Kirschke E, Goswami D, Southworth D, Griffin PR, Agard DA. Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell, 2014; 157:1685-97. https://doi.org/10.1016/j.cell.2014.04.038

Klein K, Zanger UM. Pharmacogenomics of cytochrome P450 3A4: recent progress toward the "missing heritability" problem. Front Genet, 2013; 4:1-15. https://doi.org/10.3389/fgene.2013.00012

Kok L, Hillegers MH, Veldhuijzen DS, Boks MP, Dieleman JM, van Dijk D, Joëls M, Vinkers CH. Genetic variation in the glucocorticoid receptor and psychopathology after dexamethasone administration in cardiac surgery patients. J Psychiatr Res, 2018; 103:167-72. https://doi.org/10.1016/j.jpsychires.2018.05.015

Kostik MM, Klyushina AA, Moskalenko MV, Scheplyagina LA, Larionova VI. Glucocorticoid receptor gene polymorphism and juvenile idiopathic arthritis. Pediatr Rheumatol, 2011; 9:1-7. https://doi.org/10.1186/1546-0096-9-2

Krupoves A, MacK D, Seidman E, Deslandres C, Amre D. Associations between variants in the ABCB1 (MDR1) gene and corticosteroid dependence in children with Crohn's disease. Inflamm Bowel Dis, 2011; 17:2308-17. https://doi.org/10.1002/ibd.21608

Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy: a systematic review and meta-analysis. Arch Intern Med, 1999; 159:941-55. https://doi.org/10.1001/archinte.159.9.941

Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, Brown JP, Cohen A, Kim H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol, 2013; 9(1):1-25. https://doi.org/10.1186/1710-1492-9-30

Liu J, Wan Z, Song Q, Li Z, He Y, Tang Y, Xie W, Xie Y, Zhang J. NR3C1 gene polymorphisms are associated with steroid resistance in patients with primary nephrotic syndrome. Pharmacogenomics, 2018; 19:45-60. https://doi.org/10.2217/pgs-2017-0084

Mager DE, Moledina N, Jusko WJ. Relative immunosuppressive potency of therapeutic corticosteroids measured by whole blood lymphocyte proliferation. J Pharm Sci, 2003; 92:1521-5. https://doi.org/10.1002/jps.10402

Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev, 2011; 32:81-151. https://doi.org/10.1210/er.2010-0013

Narum S, Westergren T, Klemp M. Corticosteroids and risk of gastrointestinal bleeding: a systematic review and meta-analysis. BMJ Open, 2014; 4:1-10. https://doi.org/10.1136/bmjopen-2013-004587

Nicolaides C, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steriods, 2010; 75:1-28. https://doi.org/10.1016/j.steroids.2009.09.002

Nilsson MB, Langley RR, Fidler IJ. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res, 2005; 65:10794-800. https://doi.org/10.1158/0008-5472.CAN-05-0623

Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol, 2013; 132:1033-44. https://doi.org/10.1016/j.jaci.2013.09.007

Olsen NJ, Moore JH, Aune TM. Gene expression signatures for autoimmune disease in peripheral blood mononuclear cells. Arthritis Res Ther, 2004; 6:120-8. https://doi.org/10.1186/ar1190

Parameswaran N, Patial S. Tumor necrosis factor-a signaling in macrophages. Crit Rev Eukaryot Gene Expr, 2010; 20:87-103. https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10

Pemberton LF, Paschal BM. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic, 2005; 6:187-98. https://doi.org/10.1111/j.1600-0854.2005.00270.x

Pratt WB, Scherrer LC, Hutchison KA, Dalman FC. A model of glucocorticoid receptor unfolding and stabilization by a heat shock protein complex. J Steroid Biochem Mol Biol, 1992; 41:223-9. https://doi.org/10.1016/0960-0760(92)90348-M

Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update, 2014; 20(5):702-16. https://doi.org/10.1093/humupd/dmu015

Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 2015; 23:231-69. https://doi.org/10.1007/s10787-015-0239-y

Ramamoorthy S, Cidlowski JA. Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin North Am, 2016; 42:15-31. https://doi.org/10.1016/j.rdc.2015.08.002

Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, Myers RM. Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res, 2009; 19:2163-71. https://doi.org/10.1101/gr.097022.109

Russcher H, Smit P, Van Den Akker ELT, Van Rossum EFC, Brinkmann AO, De Jong FH, Lamberts SWJ, Koper JW. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression. J Clin Endocrinol Metab, 2005; 90:5804-10. https://doi.org/10.1210/jc.2005-0646

Samuel S, Nguyen T, Choi HA. Pharmacologic characteristics of corticosteroids. J Neurocritical Care, 2017; 10:53-9. https://doi.org/10.18700/jnc.170035

Smith CL, Oñate SA, Tsai MJ, O'Malley BW. CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc Natl Acad Sci U S A, 1996; 93:8884-8. https://doi.org/10.1073/pnas.93.17.8884

Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K. Rheumatoid arthritis. Nat Rev Dis Prim, 2018; 4:1-23. https://doi.org/10.1038/nrdp.2018.1

Song Q, Tang Y, Liu J. Pharmacogenomics genetic variation in the glucocorticoid. Pharmacogenomics, 2017; 18:293-316. https://doi.org/10.2217/pgs-2016-0151

Song T, Chang H, Du L, Yin L, Shi F, Zhang X. Glucocorticoid receptor mutations and clinical sensitivity to glucocorticoid in Chinese multiple sclerosis patients. Neurol Sci, 2020; 41:2767-71. https://doi.org/10.1007/s10072-020-04376-8

Sreih A, Ezzeddine R, Leng L, Lachance A, Yu G, Mizue Y, Subrahmanyan L, Pons-Estel BA, Abelson AK, Gunnarsson I, Svenungsson E, Cavett J, Glenn S, Zhang L, Montgomery R, Perl A, Salmon J, Alarcón- Riquelme ME, Harley JB, Bucala R. Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus. Arthritis Rheum, 2011; 63:3942-51. https://doi.org/10.1002/art.30624

Stockmann C, Fassl B, Gaedigk R, Nkoy F, Uchida DA, Monson S, Reilly CA, Leeder JS, Yost GS, Ward RM. Fluticasone propionate pharmacogenetics: CYP3A4*22 polymorphism and pediatric asthma control. J Pediatr, 2013; 162(6):162. https://doi.org/10.1016/j.jpeds.2012.11.031

Tanaka T, Narazaki M, Kishimoto T. Il-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol, 2014; 6:a016295. https://doi.org/10.1101/cshperspect.a016295

Teng R. Ticagrelor: pharmacokinetic, pharmacodynamic and pharmacogenetic profile: an update. Clin Pharmacokinet, 2015; 54(11):25-38. https://doi.org/10.1007/s40262-015-0290-2

Van Winsen LML, Manenschijn L, Van Rossum EFC, Crusius BA, Koper JW, Polman CH, Uitdehaag BMJ. A glucocorticoid receptor gene haplotype (TthIII1/ER22/23EK/9β) is associated with a more aggressive disease course in multiple sclerosis. J Clin Endocrinol Metab, 2009; 94:2110-4. https://doi.org/10.1210/jc.2008-2194

Vitkauskaite A, Celiesiute J, Juseviciute V, Jariene K, Skrodeniene E, Samuolyte G, Nadisauskiene RJ, Vaitkiene D. IL-6 597A/G (rs1800797) and 174G/C (rs1800795) gene polymorphisms in the development of cervical cancer in Lithuanian Women. Medicina (B Aires), 2021; 57:1025. https://doi.org/10.3390/medicina57101025

Xavier AM, Anunciato AKO, Rosenstock TR, Glezer I. Gene expression control by glucocorticoid receptors during innate immune responses. Front Endocrinol (Lausanne), 2016; 7:1-8. https://doi.org/10.3389/fendo.2016.00031

Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther, 2013; 138:103-41. https://doi.org/10.1016/j.pharmthera.2012.12.007

Zhang Z, Wang L, Sun X, Zhang L, Lu L. Association of IL4 and IL4R polymorphisms with multiple sclerosis susceptibility in Caucasian population: a meta-analysis. J Neurol Sci, 2016; 363:107-13. https://doi.org/10.1016/j.jns.2016.02.049

Article Metrics

0 Absract views 2 PDF Downloads 2 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required