Metabolites analysis of the marine sponge Callyspongia affinis from Kangean Island as a potential source for anticancer candidates

Moh Farid Rahman Aulanni Masruri Akhmad Sabarudin Siti Mariyah Ulfa Edwin Setiawan   

Open Access   

Published:  Jan 01, 2023

DOI: 10.7324/JAPS.2023.66405
Abstract

This study has the objective to determine the metabolites classes contained in the hexane, EtOAc, BuOH, and aqueous fractions partitioned from the MeOH extract of the Callyspongia affinis sponge from Kangean Island, Indonesia. This study used a sponge from Kangean Island collected at 3–10 m depth as a research sample. The collected sample was then identified in the Zoology and Animal Engineering Laboratory, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia. The extracts and fractions were investigated for their ability in terms of free radical scavenging, toxicity, antiproliferation, and apoptotic activity against HeLa and MCF-7 cells. The results showed that all fractions have organic nitrogen metabolites in the form of alkaloids and amide functional groups. The EtOAc and BuOH fractions contain fluorinated organic halides, while the aqueous fraction contains chlorinated organic halides. The EtOAc fraction showed the best ability as free radical 2,2-diphenyl-1-picryl-hydrazyl-hydrate scavenging with an IC50 of 27.617 μg/mL. It has the highest toxicity against Artemia salina with an LC50 of 26.652 μg/mL. The EtOAc fraction showed the best antiproliferative ability against HeLa and MCF-7 cells with IC50 values of 94.934 ± 0.700 and 97.804 ± 0.241 μg/mL, respectively. The EtOAc extract also showed the best apoptotic ability to HeLa and MCF-7 cells with IC50 values of 143.380 ± 0.010 and 131.646 ± 0.011 μg/mL, followed by MeOH extract and hexane fractions.


Keyword:     Marine sponges Callyspongia toxicity apoptotic anticancer


Citation:

Rahman MF, Aulanni, Masruri, Sabarudin A, Ulfa SM, Setiawan E. Metabolites analysis of the marine sponge Callyspongia affinis from Kangean Island as a potential source for anticancer candidates. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.66405

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Abdillah S, Nurhayati APD, Nurhatika S, Setiawan E, Heffen WL. Cytotoxic and antioxidant activities of marine sponge diversity at Pecaron Bay Pasir Putih Situbondo East Java, Indonesia. J Pharm Res, 2013; 6(7):685-9; doi: 10.1016/j.jopr.2013.07.001. https://doi.org/10.1016/j.jopr.2013.07.001

Arunachalam K, Amirtham Jacob Appadorai R. Antioxidant potential and biochemical evaluation of metabolites from the marine bacteria Virgibacillus sp. associated with the sponge Callyspongia diffusa. Free Radic Antioxid, 2013; 3(1):47-51; doi: 10.1016/j.fra.2013.04.004. https://doi.org/10.1016/j.fra.2013.04.004

Calcabrini C, Catanzaro E, Bishayee A, Turrini E, Fimognari C. Marine sponge natural products with anticancer potential: an updated review. Mar Drugs, 2017; 15(10):310; doi: 10.3390/md15100310. https://doi.org/10.3390/md15100310

Chakraborty K, Francis P. Callypyrones from marine Callyspongiidae sponge Callyspongia diffusa: antihypertensive bis-γ- pyrone polypropionates attenuate angiotensin-converting enzyme. Nat Prod Res, 2021; 35(24):5801-12; doi: 10.1080/14786419.2020.1837819. https://doi.org/10.1080/14786419.2020.1837819

Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol, 2004; 92(2-3):177-191; doi: 10.1016/j.jep.2004.02.011. https://doi.org/10.1016/j.jep.2004.02.011

El-Hawary SS, Sayed AM, Mohammed R, Hassan HM, Rateb ME, Amin E, Mohammed TA, El-Mesery M, Muhsinah AB, Alsayari A, Wajant H, Anany MA, Abdelmohsen UR. Bioactive brominated oxindole alkaloids from the red sea sponge Callyspongia siphonella. Mar Drugs, 2019; 17(8):1-13; doi: 10.3390/md17080465. https://doi.org/10.3390/md17080465

Erpenbeck D, Galitz A, Ekins M, Cook S de C, van Soest RWM, Hooper JNA, Wörheide G. Soft sponges with tricky tree: on the phylogeny of dictyoceratid sponges. J Zool Syst Evol Res, 2020; 58(1):27-40; doi: 10.1111/jzs.12351. https://doi.org/10.1111/jzs.12351

Hadisaputri YE, Andhika R, Sopyan I, Zuhrotun A, Maharani R, Rachmat R, Abdullah, R. Caspase cascade activation during apoptotic cell death of human lung carcinoma cells A549 induced by marine sponge Callyspongia aerizusa. Drug Des Devel Ther, 2021; 15:1357-68; doi: 10.2147/DDDT.S282913. https://doi.org/10.2147/DDDT.S282913

Ibrahim HAH, El-Naggar HA, El-Damhougy KA, Bashar MAE, Abou Senna FM. Callyspongia crassa and C. siphonella (Porifera, Callyspongiidae) as a potential source for medical bioactive substances, Aqaba Gulf, Red Sea, Egypt. J Basic Appl Zool, 2017; 78(1):1-10; doi: 10.1186/ s41936-017-0011-5. https://doi.org/10.1186/s41936-017-0011-5

Ibrahim SRM, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin W, Wray V, Edrada-Ebel R, Proksch P. Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorg Med Chem, 2010; 18(14):4947-56; doi: 10.1016/j. bmc.2010.06.012. https://doi.org/10.1016/j.bmc.2010.06.012

Kapojos MM, Abdjul DB, Yamazaki H, Ohshiro T, Rotinsulu H, Wewengkang DS, Sumilat DA, Tomoda H, Namikoshi M, Uchida R. Callyspongiamides A and B, sterol O-acyltransferase inhibitors, from the Indonesian marine sponge Callyspongia sp. Bioorg Med Chem Lett, 2018; 28(10):1911-14; doi: 10.1016/j.bmcl.2018.03.077. https://doi.org/10.1016/j.bmcl.2018.03.077

Khazaei S, Esa NM, Ramachandran V, Hamid RA, Pandurangan AK, Etemad A, Ismail P. In vitro antiproliferative and apoptosis inducing effect of allium atroviolaceum bulb extract on breast, cervical, and liver cancer cells. Front Pharmacol, 2017; 8:1-16; doi: 10.3389/fphar.2017.00005. https://doi.org/10.3389/fphar.2017.00005

Ki DW, El-Desoky AH, Kodama T, Wong CP, Ghani MA, El- Beih AA, Mizuguchi M, Morita H. New cytotoxic polyacetylene amides from the Egyptian marine sponge Siphonochalina siphonella. Fitoterapia, 2020; 142(January):104511; doi: 10.1016/j.fitote.2020.104511. https://doi.org/10.1016/j.fitote.2020.104511

Kumar MS, Adki KM. Marine natural products for multi-targeted cancer treatment: a future insight. Biomed Pharmacother, 2018; 105(February):233-45; doi: 10.1016/j.biopha.2018.05.142. https://doi.org/10.1016/j.biopha.2018.05.142

Latifah LA, Soekamto NH, Tahir A. New antibacterial activities of brominated c18 and c20 fatty acids isolated from marine sponge Xestospongia testudinaria against shrimp pathogenic bacteria. Rasayan J Chem, 2021; 14(1):460-5; doi: 10.31788/RJC.2021.1415999. https://doi.org/10.31788/RJC.2021.1415999

Lim HK, Bae W, Lee H-S, Jung J. Anticancer activity of marine sponge Hyrtios sp. extract in human colorectal carcinoma RKO cells with different p53 status. Biomed Res Int, 2014:5:1-5; doi: 10.1155/2014/413575. https://doi.org/10.1155/2014/413575

Lorig-Roach N, Hamkins-Indik F, Johnson TA, Tenney K, Valeriote FA, Crews P. The potential of achiral sponge-derived and synthetic bromoindoles as selective cytotoxins against PANC-1 tumor cells. Tetrahedron, 2018; 74(2):217-23; doi: 10.1016/j.tet.2017.11.029. https://doi.org/10.1016/j.tet.2017.11.029

Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Plant Med, 1982; 45(1):31-4; doi: 10.1055/s-2007-971236. https://doi.org/10.1055/s-2007-971236

Oogarah PN, Ramanjooloo A, Rovisham J, Doorga S, Meyepa C, Wilhelmus R, Soest M Van, Edgard D, Marie P. Assessing antioxidant activity and phenolic content of marine sponges from mauritius waters. Int J Pharmacogn Phytochem Res, 2020; 12(3):123-31; doi: 10.25258/phyto.12.3.1.

Pawlik JR, McMurray SE. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu Rev Mar Sci, 2020; 12:315-37; doi: 10.1146/annurev-marine-010419-010807. https://doi.org/10.1146/annurev-marine-010419-010807

Rady I, Bashar AEM. Novel extracts from Callyspongia siphonella and Negombata magnifica sponges from the Red Sea, induced antiproliferative and proapoptotic activity in HepG-2, MCF-7, and Caco- 2 cancer cell lines. Egypt J Aquat Biol Fish, 2020; 24(7):319-47; doi: 10.21608/EJABF.2020.121064. https://doi.org/10.21608/ejabf.2020.121064

Raja K, Martin LC, Bose L, Sahayanathan GJ, Padmanaban D, Chinnasamy A. Anti-proliferative and apoptotic effects of by-product (skin extract) from marine catfish Tachysurus dussumieri. Biocatal Agric Biotechnol, 2020; 29(October):101816; doi: 10.1016/j.bcab.2020.101816. https://doi.org/10.1016/j.bcab.2020.101816

Rocha AB, Lopes RM, Schwartsmann G. Natural products in anticancer therapy. Curr Opin Pharmacol, 2001; 1(4):364-9; doi: 10.1016/ S1471-4892(01)00063-7. https://doi.org/10.1016/S1471-4892(01)00063-7

Shaala LA, Youssef DTA, Ibrahim SRM, Mohamed GA. Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species. Nat Prod Res, 2016; 30(24):2783-90; doi: 10.1080/14786419.2016.1155577. https://doi.org/10.1080/14786419.2016.1155577

Shu P, Yu M, Li Y, Luo Y, Liu H, Zhu H, Zhang J, Zhang L, Wei X, Xiao F. Synthesis of cinnamoyl glucoside derivatives and their antiproliferation activities against murine melanoma B16-F10 cell line. Carbohydr Res, 2021; 504(April):108332; doi: 10.1016/j. carres.2021.108332. https://doi.org/10.1016/j.carres.2021.108332

Umeyama A, Matsuoka N, Mine R, Nakata A, Arimoto E, Matsui M, Shoji N, Arihara S, Takei M, Hashimoto T. Polyacetylene diols with antiproliferative and driving Th1 polarization effects from the marine sponge Callyspongia sp. J Nat Med, 2010; 64(1):93-7; doi: 10.1007/ s11418-009-0363-3. https://doi.org/10.1007/s11418-009-0363-3

Wao YP, Priska M. Daya Hambat Ekstrak Callyspongia sp. terhadap Bakteri dari Eucheuma Cottoni berpenyakit Ice-Ice. EduMatSains, 2021; 6(1):111-22. https://doi.org/10.33541/edumatsains.v6i1.2983

Youssef DTA, Van Soest RWM, Fusetani N. Callyspongamide A, a new cytotoxic polyacetylenic amide from the Red Sea sponge Callyspongia fistularis. J Nat Prod, 2003; 66(6):861-2; doi: 10.1021/ np0205809. https://doi.org/10.1021/np0205809

Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q, Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res, 2021; 11(5):1913-35.

Article Metrics

0 Absract views 4 PDF Downloads 4 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required