Optimization of Graptophyllum pictum leaves extraction using a simplex centroid design focused on extracting flavonoids with antioxidant activity

Feda Anisah Makkiyah Eldiza Puji Rahmi Tiwuk Susantiningsih Nelly Marliani Rini Anggi Arista Waras Nurcholis   

Open Access   

Published:  Dec 27, 2022

DOI: 10.7324/JAPS.2023.117043

Graptophyllum pictum (L.) Griff, which is called “daun ungu” in Indonesia, is a medicinal plant that contained flavonoids with antioxidant activity. The different extractor solvents (water, acetone, methanol, and ethanol) and their combinations were studied using a simplex centroid design through the Design Expert 13.0 program. From the optimized crude extract, it was investigated for total flavonoid content (TFC) using the colorimetric method (AlCl3), as well as the antioxidant activity using 2,2-diphenyl-1-picryl hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. The optimum condition was obtained at a desirability value of 0.745 with a water solvent system at a proportion of 1.00 (100%) which resulted in a TFC of 10.464 mg QE/g DW, the antioxidant activity of DPPH 2.179 μmol TE/g DW, and FRAP 22.009 μmol TE/g DW. The method was verified and analyzed based on the percentage of residual standard error, which resulted in <5% so that the predicted and actual results were not significantly different. These results indicate that the simplex centroid design can optimize flavonoid compounds with potent antioxidant activity from G. pictum leaves.

Keyword:     Antioxidant DPPH flavonoids FRAP simplex centroid design


Makkiyah FA, Rahmi EP, Susantiningsih T, Marliani N, Arista RA, Nurcholis W. Optimization of Graptophyllum pictum leaves extraction using a simplex centroid design focused on extracting flavonoids with antioxidant activity. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2023.117043

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text


Abenavoli L, Larussa T, Corea A, Procopio AC, Boccuto L, Dallio M, Federico A, Luzza F. Dietary polyphenols and non-alcoholic fatty liver disease. Nutrients, 2021; 13:494; doi:10.3390/nu13020494. https://doi.org/10.3390/nu13020494

Alara OR, Abdurahman NH, Ukaegbu CI, Azhari NH. Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Ind Crops Prod, 2018; 122:533-44; doi:10.1016/j.indcrop.2018.06.034. https://doi.org/10.1016/j.indcrop.2018.06.034

Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem, 1996; 239(1):70-6; doi:10.1006/abio.1996.0292. https://doi.org/10.1006/abio.1996.0292

Blois MS. Antioxidant determinations by the use of a stable free radical. Nature, 1958; 181:1199-200; doi:10.1038/1811199a0 https://doi.org/10.1038/1811199a0

Carey CC, Lucey A, Doyle L. Flavonoid containing polyphenol consumption and recovery from exercise-induced muscle damage: a systematic review and meta-analysis. Sport Med, 2021; 51:1293-316; doi:10.1007/s40279-021-01440-x. https://doi.org/10.1007/s40279-021-01440-x

Dos Santos C, Mizobucchi AL, Escaramboni B, Lopes BP, Angolini CFF, Eberlin MN, De Toledo KA, Núñez EG. Optimization of Eugenia punicifolia (Kunth) D. C. leaf extraction using a simplex centroid design focused on extracting phenolics with antioxidant and antiproliferative activities. BMC Chem, 2020; 14:34; doi:10.1186/s13065-020-00686-2. https://doi.org/10.1186/s13065-020-00686-2

Fadil M, Lebrazi S, Aboulghazi A, Guaouguaou F-E, Rais C, Slimani C, Es-safi NE. Multi-response optimization of extraction yield, total phenols-flavonoids contents, and antioxidant activity of extracts from moroccan Lavandula stoechas leaves: predictive modeling using simplex-centroid design. Biocatal Agric Biotechnol, 2022; 43:102430; doi:10.1016/j. bcab.2022.102430. https://doi.org/10.1016/j.bcab.2022.102430

Gasmi A, Mujawdiya PK, Noor S, Lysiuk R, Darmohray R, Piscopo S, Lenchyk L, Antonyak H, Dehtiarova K, Shanaida M, Polishchuk A. Polyphenols in metabolic diseases. Molecules, 2022; 27:6280; doi:10.3390/molecules27196280. https://doi.org/10.3390/molecules27196280

Grigonis D, Venskutonis PR, Sivik B, Sand ahl M, Eskilsson CS. Comparison of different extraction techniques for isolation of antioxidants from sweet grass (Hierochloë Odorata). J Supercrit Fluids, 2005; 33:223- 33; doi:10.1016/j.supflu.2004.08.006. https://doi.org/10.1016/j.supflu.2004.08.006

Handayani S. Aktivitas antioksidan ekstrak hipokotil Bruguiera gymnorhiza pada pelarut dan fase kematangan yang berbeda. AGROINTEK, 2021; 15(3):685-94; doi:10.21107/agrointek.v15i3.8477. https://doi.org/10.21107/agrointek.v15i3.8477

Ibrahim ND, Seow LJ, Sekar M, Izzati Mat Rani NN, Lum PT. Ten commonly available medicinal plants in Malaysia with potential sun protection factor and antioxidant properties-a review. Pharmacogn J, 2022; 14:444-55; doi:10.5530/pj.2022.14.57. https://doi.org/10.5530/pj.2022.14.57

Icyer NC, Toker OS, Karasu S, Tornuk F, Bozkurt F, Arici M, Sagdic O. Combined design as a useful statistical approach to extract maximum amount of phenolic compounds from virgin olive oil waste. LWT, 2016; 70:24-32; doi:10.1016/j.lwt.2016.02.029. https://doi.org/10.1016/j.lwt.2016.02.029

Jdaini K, Alla F, Mensouri F, Parmar A, Elhoumaizi MA. Optimizing the extraction of phenolic antioxindats from date palm 2 fruit by simplex centroid solvent mixture design. Heliyon, 2022; doi: 10.2139/ssrn.4065295 https://doi.org/10.2139/ssrn.4065295

Jiangseubchatveera N, Liawruangrath B, Liawruangrath S, Teerawutgulrag A, Santiarworn D, Korth J, Pyne SG. The chemical constituents and the cytotoxicity, antioxidant and antibacterial activities of the essential oil of Graptophyllum pictum (L.) Griff. J Essent Oil Bear Plants, 2015; 18:11-7; doi:10.1080/0972060X.2014.935036. https://doi.org/10.1080/0972060X.2014.935036

Jiangseubchatveera N, Liawruangrath S, Teerawutgulrag A, Santiarworn D, Pyne SG, Liawruangrath B. Phytochemical screening, phenolic and flavonoid contents, antioxidant and cytotoxic activities of Graptophyllum pictum (L.) Griff. Chiang Mai J Sci, 2017; 44:193-202.

Khalafyan AA, Temerdashev ZA, Yakuba YF, Guguchkina TI. Computer analysis of the sensory qualities of red wines as a method to optimize their blend formulation. Heliyon, 2019; 5:e01602; doi:10.1016/j. heliyon.2019.e01602. https://doi.org/10.1016/j.heliyon.2019.e01602

Kusumawati I, Rullyansyah S, Rohmania, Rizka AF, Hestianah EP, Matsunami K. Histomorphometric study of ethanolic extract of Graptophyllum pictum (L.) Griff. leaves on croton oil-induced hemorrhoid mice: a Javanese traditional anti-hemorrhoid herb. J Ethnopharmacol, 2022; 284:114765; doi:10.1016/j.jep.2021.114765. Kobus-Cisowska J, Szczepaniak O, Szymanowska-Powalowska D, Piechocka J, Szule P, Dziedzinski M. Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Cienc Rural, 2020; 50(1); doi:10.1590/0103-8478cr20190371. https://doi.org/10.1590/0103-8478cr20190371

Lamien-Meda A, Lamien CE, Compaoré MMY, Meda RNT, Kiendrebeogo M, Zeba B, Millogo JF, Nacoulma OG. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules, 2008; 13(3):581-94; doi:10.3390/molecules13030581. https://doi.org/10.3390/molecules13030581

Liu S, Lin F, Wang J, Pan X, Sun L, Wu W. Polyphenols for the treatment of ischemic stroke: new applications and insights. Molecules, 2022; 27(13):4181.https://doi.org/10.3390/molecules27134181. https://doi.org/10.3390/molecules27134181

Lonni AASG, Longhini R, Lopes GC, de Mello JCP, Scarminio IS. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua. Anal Chim Acta, 2012; 719:57-60; doi:10.1016/j.aca.2011.12.053. https://doi.org/10.1016/j.aca.2011.12.053

Makkiyah F, Rahmi EP, Revina R, Susantiningsih T, Setyaningsih Y. Graptophyllum pictum (L.) Griff. (Syn: Justicia picta Linn.) and its effectiveness: a well-known Indonesian plant. Pharmacogn J, 2021; 13:835-8; doi:10.5530/pj.2021.13.106. https://doi.org/10.5530/pj.2021.13.106

Marliani N, Artika IM, Nurcholis W. Optimization extraction for total phenolic, flavonoid contents, and antioxidant activity with different solvents and UPLC-MS/MS metabolite profiling of Justicia gendarussa Burm.f. Chiang Mai Univ J Nat Sci, 2022; 21:e2022046; doi:10.12982/ CMUJNS.2022.046. https://doi.org/10.12982/CMUJNS.2022.046

Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J Agric Food Chem, 2009; 57:1655-66; doi:10.1021/jf803537k. https://doi.org/10.1021/jf803537k

Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr A, 2004; 1054:95-111; doi:10.1016/j.chroma.2004.08.059. https://doi.org/10.1016/j.chroma.2004.08.059

Nurcholis W, Ma'rifah K, Artika MI, Aisyah SI, Priosoeryanto BP. Optimization of total flavonoid content from cardamom fruits using a simplex-centroid design, along with the evaluation of the antioxidant properties. Trop J Nat Prod Res, 2021; 5:1382-8; doi:10.26538/tjnpr/v5i8.10. https://doi.org/10.26538/tjnpr/v5i8.10

Nurcholis W, Artika I M, Seno DSH, Andrianto D, Aprianti A, Febrianti F, Inawati, Ratu AP, Arendra A. Phytochemical analysis, alfa-glucosidase inhibition activity in vitro and enzyme kinetics of ethyl acetate and hexane estracts of Graptophylum pictum (L.) Griff. Curr Biochemy, 2014; 1(2):58-65; doi:10.29244/cb.1.2.58-65. https://doi.org/10.29244/cb.1.2.58-65

Park J, Park R, Jang M, Park YI. Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases. Life, 2021; 11:197; doi:10.3390/life11030197. https://doi.org/10.3390/life11030197

Poh-Yen K, Lay-Jing S, Hanani F. In vitro evaluation of photoprotective potential of the different solvent extracts of Graptophyllum pictum leaves. J Appl Pharm Sci, 2018; 8:147-51; doi:10.7324/ JAPS.2018.8122.

Qi Y, Li J, Nie Q, Gao M, Yang Q, Li Z, Li Q, Han S, Ding J, Li Y, Zhang J. Polyphenol-assisted facile assembly of bioactive nanoparticles for targeted therapy of heart diseases. Biomaterials, 2021; 275:120952; doi:10.1016/j.biomaterials.2021.120952. https://doi.org/10.1016/j.biomaterials.2021.120952

Rasera GB, Hilkner MH, de Alencar SM, de Castro RJS. Biologically active compounds from white and black mustard grains: an optimization study for recovery and identification of phenolic antioxidants. Ind Crops Prod, 2019; 135:294-300; doi:10.1016/j.indcrop.2019.04.059. https://doi.org/10.1016/j.indcrop.2019.04.059

Rustini NL, Ariati NK. Identification of active antioxidant compounds from Unge leaf ethanol extact (Graptophyllum pictum L. Griff). J Health Sci Medicine, 2018; 2(1):120952.

Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, Alshahrani MY, Islam S, Islam M. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Biomed Res Int, 2022; 2022:5445291; doi:10.1155/2022/5445291. https://doi.org/10.1155/2022/5445291

Salamatullah AM, Hayat K, Husain FM, Ahmed MA, Arzoo S, Althbiti MM, Alzahrani A, Al-Zaied BAM, Alyahya HK, Albade N, Nafiidi HA, Bourhia M. Effects of different solvents extractions on total polyphenol content, HPLC analysis, antioxidant capacity, and antimicrobial properties of pepers (red, yellow, and green (Capsicum annum L,). Evid Based Complement Alternat Med, 2022; 7372101:11; doi:10.1155/2022/7372101. https://doi.org/10.1155/2022/7372101

Sepahpur S, Selamat J, Manap MYA, Khatib A, Razis AFA. Comparative analysis of chemical composition antioxidant activity and quantitative characterization of some phenolis compounds in selected herbs and spices in different solvent extraction systems. Molecules, 2018; 23(402); doi:10.3390/molecules23020402. https://doi.org/10.3390/molecules23020402

Sharifi-Rad M, Anil Kumar N V, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol, 2020; 11:694; doi:10.3389/fphys.2020.00694. https://doi.org/10.3389/fphys.2020.00694

Srinivasan KK, Mathew JE, D'Silva KJA, Lobo R, Kumar N. Nephroprotective potential of Graptophyllum pictum against renal injury induced by gentamicin. Iran J Basic Med Sci, 2015; 18(4):412; doi:10.22038/IJBMS.2015.4292.

Sun T, Ho CT. Antioxidant activities of buckwheat extracts. Food Chem, 2005; 90(4):743-9; doi:10.1016/j.foodchem.2004.04.035. https://doi.org/10.1016/j.foodchem.2004.04.035

Sulaiman ISC, Mahiran B, Hamid RM, Wei JC, Siti EA, Maznah I. Effects of temperature, time, and solvent-ratio on the extraction of phenolic compounds and the anti-radical activity of Clinachantus nutans Lindau leaves by response surface methodology. Chem Central J, 2017; 11(54); doi:10.1186/s13065-017-0285-1. https://doi.org/10.1186/s13065-017-0285-1

Pharmacopeia. State Pharmacopeia of USSR, Moscow. Medicina, 1989; 2:324-34.

Wang YY, Peng C, Zhang Y, Wang ZR, Chen YM, Dong J-F, Xiao ML, Li DL, Li W, Zou QJ, Zhang K. Optimization, identification and bioactivity of flavonoids extracted from Moringa oleifera leaves by deep eutectic solvent. Food Biosci, 2022; 47:101687; doi:10.1016/j. fbio.2022.101687. https://doi.org/10.1016/j.fbio.2022.101687

Wang X, Pengfei L, Wang F, Fu B, He F, Zhao M, 2017. Influence of altitudinal and latitudinal variation on the composition and antioxidant activity of polyphenols in Nicotiana tabacum L. Leaf. Emirates Journal of Food and Agriculture, 29(5): 359-366. doi: 10.9755/ejfa.2016-09-1213.

Wibisono K, Aisyah SI, Suhesti S, Nurcholis W. Optimization of total flavonoids extraction and Α-glucosidase inhibitory activity from Plectranthus amboinicus (Lour.) spreng. leaves using the simplex-centroid design. Molekul, 2019; 14; doi:10.20884/1.jm.2019.14.2.497. https://doi.org/10.20884/1.jm.2019.14.2.497

Zhou K, Yu L. Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT Food Sci Technol, 2004; 37(7):717- 21. https://doi.org/10.1016/j.lwt.2004.02.008. https://doi.org/10.1016/j.lwt.2004.02.008

Article Metrics

0 Absract views 4 PDF Downloads 4 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required