The effect of human umbilical vein endothelial cells exosomes on the skin of intrinsic aging Wistar rats

Frieda Yanuar Nugrohoaji Dharmawan Indah Julianto Arie Kusumawardani Novan Adi Setyawan Ervina Rosmarwati Endra Yustin Ellistasari   

Open Access   

Published:  Nov 15, 2022

DOI: 10.7324/JAPS.2023.130214
Abstract

Aging is a complex process influenced by intrinsic and extrinsic factors. Intrinsic aging is affected by age, genetics, and hormones. A recent study has found that human umbilical vein endothelial cells (HUVEC) exosomes can serve as a new treatment for repairing and rejuvenating skin tissue. Therefore, this research aims to determine the effect of HUVEC exosomes on increasing type I collagen deposition on the skin of intrinsic aging Wistar rats. An experimental laboratory posttest-only control group study was conducted on 30 Wistar rats. The rats were divided into a control group (Group A) and treatment groups receiving 1% HUVEC exosome (Group B) and 1.5% HUVEC exosome (Group C). Collagen deposition was measured using Masson’s trichrome staining. Statistical analysis used the Kruskal–Wallis and Mann–Whitney tests (p-value < 0.05, significant). After 4 weeks, type I collagen deposition was significantly higher in the treatment groups than in the control group (p = 0.00). The mean values of collagen deposition (%) for Group A, Group B, and Group C were 15.87, 30.71, and 40.72, respectively. The Mann–Whitney test revealed that the HUVEC exosome had a significant effect on collagen deposition. Thereby, HUVEC exosomes can increase type I collagen deposition significantly and can be considered a therapeutic option for skin rejuvenation in future studies.


Keyword:     Exosomes human umbilical vein endothelial cells intrinsic aging collagen skin


Citation:

Yanuar F, Dharmawan N, Julianto I, Kusumawardani A, Setyawan NA, Rosmarwati E, Ellistasari EY. The effect of human umbilical vein endothelial cells exosomes on the skin of intrinsic aging Wistar rats. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2023.130214

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Bae YU, Son Y, Kim CH, Kim KS, Hyun SH, Woo HG, Jee BA, Choi JH, Sung HK, Choi HC, Park SY, Bae JH, Doh KO, Kim JR. Embryonic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-β receptor 2 pathway. J Gerontonol Series A Biol Sci Med Sci, 2019; 74(9):1359-67; doi:10.1093/gerona/ gly208. https://doi.org/10.1093/gerona/gly208

Bedford L, Daveluy S. Skin resurfacing dermabrasio. StatPearls Publishing, Treasure Island, FL, 2021.

Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li Y, Li J. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol, 2017; 37(12):1359-69; doi:10.1002/jat.3470. https://doi.org/10.1002/jat.3470

Cole MA, Quan T, Voorhees JJ, Fisher GJ. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal, 2018; 12(1):35-43; doi:10.1007/s12079-018-0459-1. https://doi.org/10.1007/s12079-018-0459-1

Fiqri A, Widhiati S, Mawardi P, Novan AS, Arrochman F, Julianto I, Margiana R. A histophatological review of conditioned medium exosomes from wharton's jelly derived mesenchymal stem cells administration to skin collagen deposition of aged wistar rats. Ann Rom Soc Cell Biol, 2021; 25(2):1377-983. Available via https://www.annalsofrscb. ro/index.php/journal/article/view/1094

Harding C, Heuser JE, Stahl PD. Exosomes: looking back three decades and into the future. J Cell Biol, 2013; 200(4):367-71; doi:10.1083/ jcb.201212113. https://doi.org/10.1083/jcb.201212113

Jo H, Brito S, Kwak BM, Park S, Lee MG, Bin BH. Applications of mesenchymal stem cells in skin regeneration and rejuvenation. Int J Mol Sci, 2021; 22(5):1-18; doi:10.3390/ijms22052410. https://doi.org/10.3390/ijms22052410

Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev, 2015; 21:16-9; doi:10.1016/j.arr.2015.01.001. https://doi.org/10.1016/j.arr.2015.01.001

Kang HH, Kim IK, Lee HI, Joo H, Lim JU, Lee J, Lee SH, Moon HS. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways. Biochem Biophys Res Commun, 2017; 490(2):349-55; doi:10.1016/j.bbrc.2017.06.047. https://doi.org/10.1016/j.bbrc.2017.06.047

Kim H, Park H, Lee SJ. Effective method for drug injection into subcutaneous tissue. Sci Rep, 2017; 7:9613; doi:10.1038/s41598-017-10110-w. https://doi.org/10.1038/s41598-017-10110-w

Kuivaniemi H, Tromp G. Type III collagen (COL3A1): gene and protein structure, tissue distribution, and associated diseases. Gene, 2019; 707:151-71; doi:10.1016/j.gene.2019.05.003. https://doi.org/10.1016/j.gene.2019.05.003

Li M, Wang T, Tian H, Wei G, Zhao L, Shi Y. Macrophage-derived exosomes accelerate wound healing macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol, 2019; 47(1):3793-803; doi:10.1080/21691401.2019.1669617. https://doi.org/10.1080/21691401.2019.1669617

Li X, Wang Y, Shi L, Li B, Li J, Wei Z, Lv H, Wu L, Zhang H, Yang B, Xu X, Juang J. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnol, 2020; 18(1):1-14; doi:10.1186/s12951-020-00670-x. https://doi.org/10.1186/s12951-020-00670-x

Nielsen MJ, Karsdal MA. Type III collagen. In: Karsdal MA (ed.). Biochemistry of collagens, laminins, and elastin: structure, function and biomarkers, Elsevier, Denmark and Southern Danish University, Denmark, pp 21-30, 2016; doi:10.1016/B978-0-12-809847-9.00003-9. https://doi.org/10.1016/B978-0-12-809847-9.00003-9

Poljšak B, Dahmane RG, Godic A. Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Panon Adriat, 2012; 2(2):33- 6; doi:10.2478/V10162-012-0009-0.

Rani S, Ritter T. The exosome-a naturally secreted nanoparticle and its application to wound healing. Adv Mater, 2016; 28(27):5542-52; doi:10.1002/adma.201504009. https://doi.org/10.1002/adma.201504009

Raposo, G. (1996). B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine, 183(3), 1161-1172. doi:10.1084/jem.183.3.1161 https://doi.org/10.1084/jem.183.3.1161

Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013; 200(4):373-83; doi:10.1083/ jcb.201211138. https://doi.org/10.1083/jcb.201211138

Riau AK, Ong HS, Yam GHF, Mehta JS. Sustained delivery system for stem cell-derived exosomes. Front Pharmacol, 2019; 10:1368; doi:10.3389/fphar.2019.0136. https://doi.org/10.3389/fphar.2019.01368

Stamov D, Pompe T. Structure and function of ECM-inspired composite collagen type 1 scaffold. Soft Matter, 2012; 8(40):10200-12; doi:10.1039/c2sm26134k. https://doi.org/10.1039/c2sm26134k

Wang C, Wang M, Xu T, Zhang X, Lin C, Gao W, Xu H, Lei B, Mao C. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostic, 2019; 9(1):65076; doi:10.7150/THNO.29766. https://doi.org/10.7150/thno.29766

Wang K, Meng X, Guo Z. Elastin structure, synthesis, regulatory mechanism and relationship with cardiovascular disease. Front Cell Dev Biol, 2021; 9(596702); doi:org/10.3389/fcell.2021.596702. https://doi.org/10.3389/fcell.2021.596702

Wölfle U, Seelinger G, Bauer G, Meinke MC, Lademann J, Schempp CM. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol Physiol, 2014; 26(7):316-32; doi:10.1159/000360092. https://doi.org/10.1159/000360092

Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK. The dynamic anatomy and patterning of skin. Exp Dermatol, 2016; 25(2):92-8; doi:10.1111/exd.12832. https://doi.org/10.1111/exd.12832

Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wang Y, Tang H, Wu M, Wu Y. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res, 2021; 166:105490; doi:10.1016/j.phrs.2021.105490. https://doi.org/10.1016/j.phrs.2021.105490

Yang GH, Lee YB, Kang D, Choi E, Nam Y, Lee KH, You HJ, Kang HJ, An SH, Jeon H. Overcome the barriers of the skin: exosome therapy. Biomater Res, 2021; 25(22); doi:10.1186/s40824-021-00224-8. https://doi.org/10.1186/s40824-021-00224-8

Zhang C, Deng R, Zhang G, He X, Chen H, Chen B, Wan L, Kang X. Therapeutic effect of exosomes derived from stem cells in spincal cord injury: a systematic review based on animal studies. Front Neurol, 2022; 13(847444); doi:10.3389/fneur.2022.847444. Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med, 2015; 13:49; doi:10.1186/ s12967-015-0417-0.

Zhao D, Yu Z, Li Y, Wang Y, Li Q, Han D. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and faciliting skin regeneration. J Mol Histol, 2020; 51(3):251-63; doi:10.1007/s10735-020-09877-6. https://doi.org/10.1007/s10735-020-09877-6

Article Metrics

0 Absract views 2 PDF Downloads 2 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required