Melanogenesis inhibition effect of ethanolic Andrographis paniculata leaf extract via suppression of tyrosinase and MITF expression

Rabe’ah Adam Faiqah Ramli Mariani Abdul Hamid Siti Pauliena Mohd Bohari   

Open Access   

Published:  Sep 27, 2022

DOI: 10.7324/JAPS.2023.130107
Abstract

Andrographis paniculata is a well-known and highly used potential herbal plant for worldwide medicinal use. Plant studies reported that the leaf extract of A. paniculata, which has high antioxidant capacity, has antifungal, antimicrobial, antiprotozoal, antidiabetic, liver enzyme modulation, insecticidal, and toxicity properties. Nevertheless, no report regarding its antimelanogenic activity is available. Hence, this study was carried out to investigate A. paniculata leaf extract potential of the antimelanogenic property. The data shown from this study proved that the A. paniculata leaf extract is responsible for melanin content reduction and decreases the protein expression of tyrosinase (TYR) and microphthalmia-associated transcription factor in B16F1 melanoma cells. This study found that the A. paniculata leaf extract acted powerfully in the synthesis of tyrosinase-related protein-2 inhibition. TYR is a well-known essential enzyme in melanogenesis activity. These results represent that the A. paniculata leaf extract strongly decreases the expression level of the enzyme important for melanin synthesis. Therefore, the A. paniculata extract has a high capability of becoming a lightening agent and hyperpigmentation treatment in the pharmaceutical and cosmetic market.


Keyword:     Andrographis paniculata leaf extract melanogenesis B16F1 tyrosinase MITF hyperpigmentation


Citation:

Adam R, Ramli F, Hamid MA, Bohari SPM. Melanogenesis inhibition effect of ethanolic Andrographis paniculata leaf extract via suppression of tyrosinase and MITF expression. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2023.130107

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Bello OA, Ayanda OI, Aworunse OS, Olukanmi BI. Exploring the mechanism of cytotoxic and anti-inflammatory property of andrographolide and its derivatives. Pharmacogn Rev, 2018; 1:56-65.https://doi.org/10.4103/phrev.phrev_47_17

Bhattar PA, Zawar VP, Godse KV, Patil SP, Nadkarni NJ, Gautam MM. Exogenous ochronosis. Indian J Dermatol, 2015; 60(6):537-43.https://doi.org/10.4103/0019-5154.169122

Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res, 2003; 16:101-10.https://doi.org/10.1034/j.1600-0749.2003.00029.x

Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res, 2000; 13(2):60-9.https://doi.org/10.1034/j.1600-0749.2000.130203.x

Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev, 2011; 75(1):50-83.https://doi.org/10.1128/MMBR.00031-10

Chang MS, Choi MJ, Park SY, Park SK. Inhibitory effects of hoelen extract on melanogenesis in B16F1 melanoma cells. Phytother Res, 2010; 24:1359-64.https://doi.org/10.1002/ptr.3123

Chao WW, Kuo YH, Lin BF. Isolation and identification of Andrographis paniculata (Chuanxinlian) and its biologically active constituents inhibited enterovirus 71-induced cell apoptosis. Front Pharmacol, 2021; 12:1-11.https://doi.org/10.3389/fphar.2021.762285

Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol, 2014; 134(6):1512-8.https://doi.org/10.1038/jid.2014.65

Di Petrillo A, González-Paramás AM, Era B, Medda R, Pintus F, Santos-Buelga C, Fais A. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement Altern Med, 2016; 16:1-9.https://doi.org/10.1186/s12906-016-1442-0

dos santos Videira IF, Moura DFL, Magina S. Mechanisms regulating melanogenesis. An Bras Dermatol, 2013; 88:76-83.https://doi.org/10.1590/S0365-05962013000100009

Hamid MA, Sarmidi MR, Park CS. Mangosteen leaf extract increases melanogenesis in B16F1 melanoma cells by stimulating tyrosinase activity in vitro and by up-regulating tyrosinase gene expression. Int J Mol Med, 2012; 29:209-17.

Han SM, Kim JM, Pak SC. Anti-melanogenic properties of honeybee (Apis mellifera L.) venom in α-MSH-stimulated B16F1 cells. Food Agric Immunol, 2015; 26:451-62.https://doi.org/10.1080/09540105.2014.950202

Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Moh Qrimida A, Allzrag AMM, Ming LC, Pagano E, Capasso R. Andrographis paniculata (Burm. f.) Wall. ex Nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life (Basel), 2021; 11(4):348.https://doi.org/10.3390/life11040348

Hu Frisk JMH, Kjellén L, Melo FR, Öhrvik H, Pejler G. Mitogen-activated protein kinase signaling regulates proteoglycan composition of mast cell secretory granules. Front Immunol, 2018; 9:1670.https://doi.org/10.3389/fimmu.2018.01670

Jeon NJ, Kim YS, Kim EK, Dong X, Lee JW, Park JS, Shin WB, Moon SH, Jeon BT, Park PJ. Inhibitory effect of carvacrol on melanin synthesis via suppression of tyrosinase expression. J Funct Foods, 2018; 45:199-205.https://doi.org/10.1016/j.jff.2018.03.043

Jin KS, Oh YN, Hyun SK, Kwon HJ, Kim BW. Betulinic acid isolated from Vitis amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells. Food Chem Toxicol, 2014; 68:38-43.https://doi.org/10.1016/j.fct.2014.03.001

Kami?ski K, Kazimierczak U, Kolenda T. Oxidative stress in melanogenesis and melanoma development. Contemp Oncol (Pozn), 2022; 26(1):1-7.https://doi.org/10.5114/wo.2021.112447

Kawakami A, Fisher DE. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest, 2017; 97:649-56.https://doi.org/10.1038/labinvest.2017.9

Khan I, Khan F, Farooqui A, Ansari IA. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr Cancer, 2018; 70(5):787-803.https://doi.org/10.1080/01635581.2018.1470649

Kim MJ, Jung TK, Park H, Yoon K. Effect of hoechunyangkyeok-san extract on melanogenesis. J Cosmet Dermatol Sci Appl, 2016; 6:85-95.https://doi.org/10.4236/jcdsa.2016.63011

Kim SS, Kim MJ, Choi YH, Kim BK, Kim KS, Park KJ, Park SM, Lee NH, Hyun CG. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma. Asian Pac J Trop Biomed, 2013; 3(8):617-22.https://doi.org/10.1016/S2221-1691(13)60125-2

Lajis AFB, Hamid M, Ariff AB. Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. J Biomed Biotechnol, 2012; 2012:952452.https://doi.org/10.1155/2012/952452

Lee AY. Skin pigmentation abnormalities and their possible relationship with skin aging. Int J Mol Sci, 2021; 22(7):3727.https://doi.org/10.3390/ijms22073727

Lim J, Nam S, Jeong JH, Kim MJ, Yang Y, Lee MS, Lee HG, Ryu JH, Lim JS. Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation. Br J Pharmacol, 2019; 176(5):737-50.https://doi.org/10.1111/bph.14560

Lin VC, Ding HY, Tsai PC, Wu JY, Lu YH, Chang TS. In vitro and in vivo melanogenesis inhibition by biochanin a from Trifolium pratense. Biosci Biotechnol Biochem, 2011; 75:914-8.https://doi.org/10.1271/bbb.100878

Lin HC, Su SL, Lu CY, Lin AH, Lin WC, Liu CS, Yang YC, Wang HM, Lii CK, Chen HW. Andrographolide inhibits hypoxia-induced HIF-1α- driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells. Environ Toxicol, 2017; 32(3):918-30.https://doi.org/10.1002/tox.22293

Liu YT, Chen HW, Lii CK, Jhuang JH, Huang CS, Li ML, Yao HT. A diterpenoid, 14-deoxy-11, 12-didehydroandrographolide, in Andrographis paniculata reduces steatohepatitis and liver injury in mice fed a high-fat and high-cholesterol diet. Nutrient, 2020; 12(2):523.https://doi.org/10.3390/nu12020523

Loureiro Damasceno JPL, Silva da Rosa H, Silva de Araújo L, Furtado NAJC. Andrographis paniculata formulations: impact on diterpene lactone oral bioavailability. Eur J Drug Metab Pharmacokinet, 2022; 47(1):19-30.https://doi.org/10.1007/s13318-021-00736-7

Munshi A, Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer, 2013; 4(9-10):401-8.https://doi.org/10.1177/1947601913485414

Ngeow KC, Friedrichsen HJ, Li L, Zeng Z, Andrews S, Volpon L, Brunsdon H, Berridge G, Picaud S, Fischer R, Lisle R, Knapp S, Filippakopoulos P, Knowles H, Steingrímsson E, Borden KLB, Patton EE, Goding CR. BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. In: Proceedings of the National Academy of Sciences of the United States of America, 2018; 115:E8668-77.https://doi.org/10.1073/pnas.1810498115

Oh E, Kim HJ, Lee D, Kang JH, Kim HG, Han SH, Baek NI, Kim KT. 8-Methoxybutin inhibits α-MSH induced melanogenesis and proliferation of skin melanoma by suppression of the transactivation activity of microphthalmia-associated transcription factor. Biomed Pharmacother, 2022; 152:113272.https://doi.org/10.1016/j.biopha.2022.113272

Oh MJ, Hamid MA, Ngadiran S, Seo YK, Sarmidi MR, Park CS. Ficus deltoidea (Mas cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Arch Dermatol Res, 2011; 303:161-70.https://doi.org/10.1007/s00403-010-1089-5

Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla- Benavides T, Navarro-Tito N. Extracellular-signal regulated kinase: a central molecule driving epithelial-mesenchymal transition in cancer. Int J Mol Sci, 2019; 20(12):2885.https://doi.org/10.3390/ijms20122885

Panzella L, Napolitano A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: recent advances. Cosmetics, 2019; 6(4):57.https://doi.org/10.3390/cosmetics6040057

Paruchuru LB, Govindaraj S, Razin E. The critical role played by mitochondrial MITF serine 73 phosphorylation in immunologically activated mast cells. Cells, 2022; 11(3):589.https://doi.org/10.3390/cells11030589

Pfisterer PH, Rollinger JM, Schyschka L, Rudy A, Vollmar AM, Stuppner H. Neoandrographolide from Andrographis paniculata as a potential natural chemosensitizer. Planta Med, 2010; 76(15):1698-700.https://doi.org/10.1055/s-0030-1249876

Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem, 2017; 32(1):403-25.https://doi.org/10.1080/14756366.2016.1256882

Pop C, Vlase L, Tamas M. Natural resources containing arbutin. determination of arbutin in the leaves of Bergenia crassifolia (L.) fritsch. acclimated in Romania. Notulae Botanicae Horti Agrobotanici Cluj- Napoca, 2009; 37:129-32.

Qiao Z, Koizumi Y, Zhang M, Natsui M, Flores MJ, Gao L, Yusa K, Koyota S, Sugiyama T. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci Biotechnol Biochem, 2012; 76(10):1877-83.https://doi.org/10.1271/bbb.120341

Rahmi EP, Kumolosasi E, Jalil J, Buang F, Jamal JA. Extracts of Andrographis paniculata (Burm.f.) nees leaves exert anti-gout effects by lowering uric acid levels and reducing monosodium urate crystal-induced inflammation. Front Pharmacol, 2022; 12:787125.https://doi.org/10.3389/fphar.2021.787125

Sato K, Ando R, Kobayashi H, Nishio T. 2-Ethoxybenzamide stimulates melanin synthesis in B16F1 melanoma cells via the CREB signaling pathway. Mol Cell Biochem, 2016; 423:39-52.https://doi.org/10.1007/s11010-016-2823-x

Sato K, Morita M, Ichikawa C, Takahashi H, Toriyama M. Depigmenting mechanisms of all-trans retinoic acid and retinol on B16 melanoma cells. Biosci Biotechnol Biochem, 2008; 72:2589-97.https://doi.org/10.1271/bbb.80279

Sato K, Takahashi H, Toriyama M. Depigmenting mechanism of NSAIDs on B16F1 melanoma cells. Arch Dermatol Res, 2011; 303:171-80.https://doi.org/10.1007/s00403-010-1094-8

Shu J, Huang R, Tian Y, Liu Y, Zhu R, Shi G. Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways. Ann Cardiothorac Surg, 2020; 9:1965-75.https://doi.org/10.21037/apm-20-960

Singh M, Mukhopadhyay K. Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. Biomed Res Int, 2014; 2014:874610.https://doi.org/10.1155/2014/874610

Singh N. A review on herbal plants used as immunomodulators. Int J Pharm Res, 2016; 13:3602-10.

Song YS, Balcos MC, Yun HY, Baek KJ, Kwon NS, Kim MK, Kim DS. ERK activation by fucoidan leads to inhibition of melanogenesis in Mel-Ab cells. Korean J Physiol Pharmacol, 2015; 19(1):29-34.https://doi.org/10.4196/kjpp.2015.19.1.29

Sun L, Guo C, Yan L, Li H, Sun J, Huo X, Xie X, Hu J. Syntenin regulates melanogenesis via the p38 MAPK pathway. Mol Med Rep, 2020; 22(2):733-8.https://doi.org/10.3892/mmr.2020.11139

Sunkara HP, Kilaru KR, Kumar AP, Ramineni HB, Krishna PR. A case report on hydroquinone induced exogenous ochronosis. Int J Adv Med, 2020; 7:337.https://doi.org/10.18203/2349-3933.ijam20200091

Villareal MO, Kume S, Neffati M, Isoda H. Upregulation of mitf by phenolic compounds-rich Cymbopogon schoenanthus treatment promotes melanogenesis in B16 melanoma cells and human epidermal melanocytes. Biomed Res Int, 2017; 2017:8303671.https://doi.org/10.1155/2017/8303671

Xu C, Chou GX, Wang ZT. A new diterpene from the leaves of Andrographis paniculata Nees. Fitoterapia, 2010; 81(6):610-3.https://doi.org/10.1016/j.fitote.2010.03.003

Xue L, Li Y, Zhao B, Chen T, Dong Y, Fan R, Li J, Wang H, He X. TRP 2 mediates coat color pigmentation in sheep skin. Mol Med Rep, 2018; 17(4):5869-77.https://doi.org/10.3892/mmr.2018.8563

Zhu PY, Yin WH, Wang MR, Dang YY, Ye XY. Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway. J Dermatol Sci, 2015; 79(1):74-83.https://doi.org/10.1016/j.jdermsci.2015.03.013

Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem, 2019; 34(1):279-309.https://doi.org/10.1080/14756366.2018.1545767

Article Metrics

0 Absract views 3 PDF Downloads 3 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required