Application of the central composite design approach for optimization of the nanosilver formula using a natural bioreductor from Camellia sinensis L. extract

Rini Dwiastuti Phingkan Alamanda Suhendra Sri Hartati Yuliani Florentinus Dika Octa Riswanto   

Open Access   

Published:  Jun 19, 2022

Abstract

In recent years, the interest in applying the nanosilver technology in the medical field has increased due to its benefit for microbial inactivation. A natural bioreductor was chosen and developed in the nanosilver formulation to minimize the toxicity effects. The content of rutin makes it possible to develop an alternative bioreductor agent using black tea (Camellia sinensis L.) leaves extract. The aim of this research was to optimize the nanosilver formula consisting of black tea leaf extract and AgNO3 with the employment of central composite design. The visible absorption wavelength and transmittance percentage were observed as dependent variables. The presence of rutin in the black tea leaves extract was proved using the thin-layer chromatography (TLC) technique. It was found that the extract concentration of 2.131% (m/v) and the AgNO3 concentration of 1.379 mM were stated as the computational recommendation resulting from the predictive model with a composite desirability value at 0.998. These optimum conditions were applied in the synthesis of six nanosilver formula replications and resulted in the percentage of a prediction relative error of absorption wavelength and transmittance which were in the ranges of 1.18%–9.18% and 2.72%–8.64%, respectively. The Relative Standard Deviation (RSD) values of absorption wavelength and transmittance were 2.81% and 2.21%, respectively. The Z-average of the nanosilver particles was 124.8 nm.


Keyword:     Bioreductor Camellia sinensis L. optimization response surface methodology


Citation:

Dwiastuti R, Suhendra PA, Yuliani SH, Riswanto FDO. Application of the central composite design approach for optimization of the nanosilver formula using a natural bioreductor from Camellia sinensis L. extract. J Appl Pharm Sci, 2022. Online First.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Abdassah M. Nanopartikel dengan gelasi ionik. Farmaka, 2009; 15(1):45-52.

Andersen ØM, Markham KR. Flavonoids: chemistri, biochemistry, and applications. Taylor & Francis Group, London, UK, 2006.

Ahmad N, Ang BC, Amalina MA, Bong CW. Influence of precursor concentration and temperature on the formation of nanosilver in chemical reduction method. Sains Malaysiana, 2018; 47(1):157-68. https://doi.org/10.17576/jsm-2018-4701-19

Aizawa Y, Sunada S, Hirakawa H, Fujimori A, Kato TA, Uesaka M. Design and evaluation of a novel flavonoid-based radioprotective agent utilizing monoglucosyl rutin. J Radiat Res, 2018; 59(3):272-81. https://doi.org/10.1093/jrr/rrx090

Anesini C, Ferraro GE, Filip R. Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J Agric Food Chem, 2008; 56(19):9225-9. https://doi.org/10.1021/jf8022782

Aryantini D, Sari F, Juleha J. Uji aktivitas antibakteri fraksi aktif terstandar flavonoid dari daun belimbing wuluh (Averrhoa bilimbi L.). J Wiyata, 2017; 4(2):143-50.

Badnore AU, Sorde KI, Datir KA, Ananthanarayan L, Pratap AP, Pandit AB. Preparation of antibacterial peel-off facial mask formulation incorporating biosynthesized silver nanoparticles. Appl Nanosci, 2018; 9(2):279-87. https://doi.org/10.1007/s13204-018-0934-2

Bhattacharya S. Central Composite Design for Response Surface Methodology and Its Application in Pharmacy. In: Response Surface Methodology in Engineering Science, London: IntechOpen, 2021. p. 1-20. https://doi.org/10.5772/intechopen.95835

Borase HP, Patil SV, Singhal RS. Moina macrocopa as a nontarget aquatic organism for assessment of ecotoxicity of silver nanoparticles: effect of size. Chemosphere, Pergamon, 2019; 219:713-23. https://doi.org/10.1016/j.chemosphere.2018.12.031

Christania FS, Dwiastuti R, Yuliani SH. Lipid and silver nanoparticles gels formulation of tempeh extract. J Pharm Sci Community, 2020; 16(2):56-62. https://doi.org/10.24071/jpsc.002032

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018; 10(2):1-17. https://doi.org/10.3390/pharmaceutics10020057

Demchenko V, Riabov S, Sinelnikov S, Radchenko O, Kobylinskyi S, Rybalchenko N. Novel approach to synthesis of ssilver nanoparticles in interpolyelectrolyte complexes based on pectin, chitosan, starch and their derivatives complexes based on pectin , chitosan , starch and their derivatives. Carbohydr Polym, 2020; 242:116431. https://doi.org/10.1016/j.carbpol.2020.116431

Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant : a review. Mater Sci Eng C, 2019; 97:954-65. https://doi.org/10.1016/j.msec.2018.12.102

Dewi KTA, Kartini K, Sukweenadhi J, Avanti C. Karakter fisik dan aktivitas antibakteri nanopartikel perak hasil green synthesis menggunakan ekstrak air daun sendok (Plantago major L.). JPSR, 2019; 6(2):69-81. https://doi.org/10.7454/psr.v6i2.4220

Dong Y, Zhu H, Id YS, Zhang W, Zhang L. Antibacterial activity of silver nanoparticles of different particle size against vibrio natriegens. PLoS One, 2019; 14(9):1-12. https://doi.org/10.1371/journal.pone.0222322

Dwiastuti R, Putri DCA, Hariono M, Riswanto FDO, Short communication: multiple response optimization of an HPLC method for analyzing resorcinol and 4-n-butyl resorcinol in lipid nanoparticles. Indones J Chem, 2021; 21(2):502-11. https://doi.org/10.22146/ijc.58537

Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid, 2018; 2018:6241017. https://doi.org/10.1155/2018/6241017

Fabiani VA, Putri MA, Saputra ME, Indriyani DP. Sintesis nanosilver menggunakan bioreduktor ekstrak daun pelawan (Tristaniopis merguensis) dan uji aktivitas antibakteri. J Kim dan Pendidik Kim, 2019; 4(3):172-8. https://doi.org/10.20961/jkpk.v4i3.34617

Ge LP, Li QT, Wang M, Jun OY, Li XJ, Xing MM. Nanosilver particles in medical applications : synthesis, performance, and toxicity. Int J Nanomedicine, 2014; 9:2399-407. https://doi.org/10.2147/IJN.S55015

Handayani W, Ningrum AS, Imawan C. The eole of pH in synthesis silver nanoparticles using Pometia pinnata (Matoa) leaves extract as bioreductor. J Phys Conf Ser, 2020; 1428(1):1-5. https://doi.org/10.1088/1742-6596/1428/1/012021

Huda N, Wahyuningsih I. Karakterisasi self-nanoemulsifying drug delivery system (SNEDDS) minyak buah merah (Pandanus conoideus Lam.). JFKI, 2018; 3(2):49. https://doi.org/10.20473/jfiki.v3i22016.49-57

Jiang H, Engelhardt UH, Thrane C, Maiwald B, Stark J. Antibacterial mechanism of silver nanoparticles in: Pseudomonas aeruginosa: proteomics approach. Metallom, Royal Soc Chem, 2015; 10(4):557-64. https://doi.org/10.1039/C7MT00328E

Khafidhoh Z, Dewi SS, Iswara A. Efektivitas infusa kulit jeruk purut (Citrus hystrix DC.) terhadap pertumbuhan Candida albicans. The 2nd University Research Colloquium, Semarang: LPPM Universitas Muhammadiyah Semarang, 2015. p. 31-37.

Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem, King Saud Univ, 2014; 7(6):1131-9. https://doi.org/10.1016/j.arabjc.2013.04.007

Kupiec A, Malina D, Wzorek Z, Zimowska M. Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Lett, 2011; 6(8):656-60. https://doi.org/10.1049/mnl.2011.0152

Latos-Brozio M, Masek A. Structure-activity relationships analysis of monomeric and polymeric polyphenols (quercetin, rutin and catechin) obtained by various polymerization methods. Chem Biodivers, 2019; 16(12):1-14. https://doi.org/10.1002/cbdv.201900426

Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater, 2011; 2011:1-16. https://doi.org/10.1155/2011/270974

Maarebia RZ, Wahid Wahab A, Taba P. Synthesis and characterization of silver nanoparticles using water extract of sarang semut (Myrmecodia pendans) for blood glucose sensors. Akta Kim Indones, 2019; 12(1):29. https://doi.org/10.20956/ica.v12i1.5881

Mohammadpour Dounighi N, Damavandi M, Zolfagharian H, Moradi S. Preparing and characterizing chitosan nanoparticles containing hemiscorpius lepturus scorpion venom as an antigen delivery system. Arch Razi Inst, 2012; 67(2):145-53.

Momin B, Rahman S, Jha N, Annapure US. Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Bioprocess Biosyst Eng, 2019; 42(4):541-53. https://doi.org/10.1007/s00449-018-2057-2

Muley AB, Mulchandani KH, Singhal RS. Immobilization of enzymes on iron oxide magnetic nanoparticles: synthesis, characterization, kinetics and thermodynamics. Methods Enzymol, 2020; 630:39-79. https://doi.org/10.1016/bs.mie.2019.10.016

Nugroho BH, Sari NP. Formulation of self nano emulsifiying drug delivery system (SNEDDS) karamunting leaf extract (Rhodomyrtus tomentosa (Ait.) Hassk). J Ilm Farm, 2018; 14(1):1-8. https://doi.org/10.20885/jif.vol14.iss1.art1

PubChem. Rutin, 2020. Available via https://pubchem.ncbi.nlm. nih.gov/compound/Rutin (Accessed 29 March 2020).

Pulit J, Banach M, Kowalski Z. Chemical reduction as the main method for obtaining nanosilver chemical reduction as the main method for obtaining nanosilver. J Comput Theor Nanosci, 2015; 10(2):1-9. https://doi.org/10.1166/jctn.2013.2691

Ravindra S, Mohan YM, Reddy NN, Raju KM. Colloids and surfaces A : physicochemical and engineering aspects fabrication of antibacterial cotton fibres loaded with silver nanoparticles via "Green Approach." Coll Surf A, 2010; 367:31-40. https://doi.org/10.1016/j.colsurfa.2010.06.013

Rengga WDP, Yufitasari A, Adi W. Synthesis of silver nanoparticles from silver nitrate solution using green tea extract (Camelia sinensis) as bioreductor. JBAT, 2017; 6(1):32-8. https://doi.org/10.15294/jbat.v6i1.6628

Riswanto FDO, Rohman A, Pramono S, Martono S. Application of response surface methodology as mathematical and statistical tools in natural product research. J Appl Pharm Sci, 2019; 9(10):125-33. https://doi.org/10.7324/JAPS.2019.91018

Salem H, Elhela AA, Abdelhady NM. Utility of silver nanoparticles for the analysis of diosmin and rutin in Persicaria salicifolia extract, authentic and pharmaceutical dosage forms monitored with their haemostatic activity. African J Pharm Pharmacol, 2018; 12(20):248-62. https://doi.org/10.5897/AJPP2018.4910

Sankar KPC, Ramakrishnan R, Rosemary MJ. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products. Mater Sci Eng C, 2016; 61:631-7. https://doi.org/10.1016/j.msec.2015.12.072

Sari ER, Meitisa M. Standarisasi mutu ekstrak daun singkong (Manihot esculenta Crantz). J Ilm Bakti Farm, 2017; 2(1):13-20.

Sari PI, Firdaus ML, Rina E. Pembuatan nanopartikel perak (NPP) dengan bioreduktor ekstrak buah Muntingia calabura L untuk analisis logam merkuri. Alotrop, 2017; 1(1):20-6. https://doi.org/10.33369/atp.v1i1.2708

Sastry SKC, Jadhav NL, Doltade SB, Pinjari DV. Effect of concentrated solar radiation on the morphology of the silver nanoparticles and its antibacterial activity. Indian Chem Eng, 2019; 61(4):374-86. https://doi.org/10.1080/00194506.2019.1579674

Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol, 2016; 44(3):811-6.

Talluri VP, Lanka SS, Saladi VR. Statistical optimization of process parameters by Central Composite Design (CCD) for an enhanced production of L-asparaginase by Myroides gitamensis BSH-3, a novel species. Avicenna J Med Biotechnol, 2019; 11(7):59-66.

Tariq M, Naveed A, Barkat AK. The morphology, characteristics, and medicinal properties of Camellia sinensis Tea. J Med Plant Res, 2010; 4(19):2028-33. https://doi.org/10.5897/JMPR10.010

Tong T, Liu YJ, Kang J, Zhang CM, Kang SG. Antioxidant activity and main chemical components of a novel fermented tea. Molecules, 2019; 24(16):1-14. https://doi.org/10.3390/molecules24162917

Turkmen N, Veliogla YS, Sari F, Polat G. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules, 2007; 12(3):484-96. https://doi.org/10.3390/12030484

Vishwasrao C, Momin B, Ananthanarayan L. green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valoriz, 2018; 10(8):2353-63. https://doi.org/10.1007/s12649-018-0230-0

Wendri N, Rupiasih NN, Sumadiyasa M. Biosintesis nanopartikel perak menggunakan ekstrak daun sambiloto: optimasi proses dan karakterisasi. JUSAMI, 2017; 18(4):162. https://doi.org/10.17146/jsmi.2017.18.4.4125

Yousefi N, Pazouki M, Hesari A, Alizadeh M. Statistical evaluation of the pertinent parameters in biosynthesis of Ag / MWfCNT composites using plackett-burman design and response surface methodology. Iran J Chem Chem Eng, 2016; 35(2):51-62.

Zhou Y, Tang RC. Facile and eco-friendly fabrication of colored and bioactive silk materials using silver nanoparticles synthesized by two flavonoids. Polymers (Basel), 2018; 10(4):404. https://doi.org/10.3390/polym10040404

Article Metrics

0 Absract views 0 PDF Downloads 0 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required