Neuroprotection by resveratrol: A review on brain delivery strategies for Alzheimer’s and Parkinson’s disease

Vasanthi Chinraj Sureshkumar Raman   

Open Access   

Published:  Jun 18, 2022

Abstract

Alzheimer’s (AD) and Parkinson’s (PD) are the two most common neurodegenerative disorders that affect millions of people worldwide, but their therapeutic opportunities are limited. Resveratrol, a hydrophobic stilbene flavonoid from various sources, including red wine, peanuts, and grapes, has been reported for its effectiveness in multiple diseases, including cancer, cardiovascular disease, and neurological disorders. The mechanism and effect of Resveratrol in AD and PD are also elaborated in detail. Resveratrol can cross the blood–brain barrier (BBB) to exert its pharmacological action. However, the therapeutic dose for its action was not achieved due to its extensive metabolite formation with glucuronide and sulfate. Hence, the discussion on the same has also been reviewed in this article. The development of promising approaches to improve the resveratrol to traverse across the BBB may help the challenges associated with brain delivery. Various studies have reported that nanotechnology-based resveratrol delivery could enhance the multiple outcomes in neurological disorders. Furthermore, preclinical and clinical findings are required to prove the effectiveness of managing AD and PD.


Keyword:     Alzheimer’s disease Parkinson’s disease resveratrol nanotechnology brain delivery


Citation:

Vasanthi C, Sureshkumar R. Neuroprotection by resveratrol: A review on brain delivery strategies for Alzheimer’s and Parkinson’s disease. J Appl Pharm Sci, 2022; 12(07):001– 017.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006; 7(1):41-53. https://doi.org/10.1038/nrn1824

Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis [Internet], 2010; 37(1):13-25. https://doi.org/10.1016/j.nbd.2009.07.030

Agrawal M, Ajazuddin, Tripathi DK, Saraf S, Saraf S, Antimisiaris SG, Mourtas S, Hammarlund-Udenaes M, Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease. J Control Release [Internet], 2017; 260(April):61-77. https://doi.org/10.1016/j.jconrel.2017.05.019

Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, Alexander A. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release [Internet], 2018; 281(April):139-77. https://doi.org/10.1016/j.jconrel.2018.05.011

Ahirrao M, Shrotriya S. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev Ind Pharm [Internet], 2017; 43(10):1686-93. https://doi.org/10.1080/03639045.2017.1338721

Ahmad E, Feng Y, Qi J, Fan W, Ma Y, He H, Xia F, Dong X, Zhao W, Lu Y, Wu W. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale, 2017; 9(3):1174-83. https://doi.org/10.1039/C6NR07581A

Al-Bishri WM, Hamza AH, Farran SK. Resveratrol treatment attenuates amyloid beta, tau protein and markers of oxidative stress, and inflammation in Alzheimer's disease rat model. Int J Pharm Res Allied Sci [Internet], 2017; 6(3):71-8.

Alarcón De La Lastra C, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem Soc Trans, 2007; 35(5):1156-60. https://doi.org/10.1042/BST0351156

Al Bakri W, Donovan MD, Cueto M, Wu Y, Orekie C, Yang Z. Overview of intranasally delivered peptides: key considerations for pharmaceutical development. Expert Opin Drug Deliv [Internet], 2018; 15(10):991-1005. https://doi.org/10.1080/17425247.2018.1517742

Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv, 2006; 3(1):139-62. https://doi.org/10.1517/17425247.3.1.139

Almeida L, Vaz-da-Silva M, Falcão A, Soares E, Costa R, Loureiro AI, Fernandes-Lopes C, Rocha JF, Nunes T, Wright L, Soaresda-Silva P. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res, 2009; 53(Suppl. 1):7-15. https://doi.org/10.1002/mnfr.200800177

Amidon GL, Lennernäs H, Shah VP, Crison JR. A Theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res, 1995; 12(3): 413-20. https://doi.org/10.1023/A:1016212804288

Amri A, Chaumeil JC, Sfar S, Charrueau C. Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release [Internet], 2012; 158(2):182-93. https://doi.org/10.1016/j.jconrel.2011.09.083

Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA. Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol, 2018; 9(NOV):1-19. https://doi.org/10.3389/fphar.2018.01261

Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release [Internet], 2014; 190:15-28. https://doi.org/10.1016/j.jconrel.2014.03.053

Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain, 2013; 136(2):374-84. https://doi.org/10.1093/brain/aws009

Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release [Internet], 2011; 153(3):198-205. https://doi.org/10.1016/j.jconrel.2011.06.001

Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, Vandelli MA, Tosi G, Grabrucker AM. Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm [Internet], 2017; 526(1-2):413-24. https://doi.org/10.1016/j.ijpharm.2017.05.015

Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta-Mol Basis Dis [Internet], 2015; 1852(6):1195-201. https://doi.org/10.1016/j.bbadis.2014.09.011

Bavaresco L, Petegolli D, Cantù E, Fregoni M, Chiusa G, Trevisan M. Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. Vitis, 1997; 36(2):77-83.

Bellaver B, Souza DG, Souza DO, Quincozes-Santos A. Resveratrol increases antioxidant defenses and decreases pro-inflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol Vitr [Internet], 2014; 28(4):479-84.https://doi.org/10.1016/j.tiv.2014.01.006

Bhise S, Yadav A, Avachat A, Malayandi R. Bioavailability of intranasal drug delivery system. Asian J Pharm, 2008; 2(4):201.https://doi.org/10.4103/0973-8398.45032

Boocock DJ, Faust GES, Patel KR, Schinas AM, Brown VA, Ducharme MP, Booth TD, Crowell JA, Perloff M, Gescher AJ, Steward WP, Brenner DE. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev, 2007; 16(6):1246-52. https://doi.org/10.1158/1055-9965.EPI-07-0022

Bournival J, Quessy P, Martinoli MG. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol, 2009; 29(8):1169-80. https://doi.org/10.1007/s10571-009-9411-5

Buckley ST, Frank KJ, Fricker G, Brandl M. Biopharmaceutical classification of poorly soluble drugs with respect to "enabling formulations." Eur J Pharm Sci, 2013; 50(1):8-16. https://doi.org/10.1016/j.ejps.2013.04.002

Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res, 2011; 2(4):215-22. https://doi.org/10.4103/2231-4040.90876

Chan OH, Stewart BH. Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov Today, 1996; 1(11):461-73. https://doi.org/10.1016/1359-6446(96)10039-8

Chan CM, Huang CH, Li HJ, Hsiao CY, Su CC, Lee PL, Hung CF. Protective effects of Resveratrol against UVA-induced damage in ARPE19 cells. Int J Mol Sci, 2015; 16(3):5789-802. https://doi.org/10.3390/ijms16035789

Chen Y, Dalwadi G, Benson HA. Drug delivery across the bloodbrain barrier. Curr Drug Deliv, 2004; 1:361-76. https://doi.org/10.2174/1567201043334542

Chen T, Li C, Li Y, Yi X, Lee SMY, Zheng Y. Oral delivery of a nanocrystal formulation of schisantherin a with improved bioavailability and brain delivery for the treatment of Parkinson's disease. Mol Pharm, 2016; 13(11):3864-75. https://doi.org/10.1021/acs.molpharmaceut.6b00644

Chung S, Yao H, Caito S, Hwang J woong, Arunachalam G, Rahman I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch Biochem Biophys [Internet], 2010; 501(1):79-90. https://doi.org/10.1016/j.abb.2010.05.003

Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci [Internet], 2018; 195:44-52. https://doi.org/10.1016/j.lfs.2017.12.025

Csiszar A. Anti-inflammatory effects of Resveratrol: possible role in prevention of age-related cardiovascular disease. Ann N Y Acad Sci, 2011; 1215(1):117-22. https://doi.org/10.1111/j.1749-6632.2010.05848.x

Das S, Lin HS, Ho PC, Ng KY. The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm Res, 2008; 25(11):2593-600. https://doi.org/10.1007/s11095-008-9677-1

Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, Scherrmann JM, De Waziers I, Declèves X. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem, 2008; 107(6):1518-28. https://doi.org/10.1111/j.1471-4159.2008.05720.x

Degan D, Ornello R, Tiseo C, Carolei A, Sacco S, Pistoia F. The role of inflammation in neurological disorders. Curr Pharm Des, 2018; 24(14):1485-501. https://doi.org/10.2174/1381612824666180327170632

Delmas D, Lin HY. Role of membrane dynamics processes and exogenous molecules in cellular resveratrol uptake: Consequences in bioavailability and activities. Mol Nutr Food Res, 2011; 55(8):1142-53. https://doi.org/10.1002/mnfr.201100065

De rijk MC, Tzourio C, Breteler MMB, Dartigues JF, Amaducci L, Lopez-pousa S, Manubens-Bertran JM, Alpérovitch A, Rocca WA. Prevalence of parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON collaborative study. J Neurol Psychiatry, 1997; (62):10-5. https://doi.org/10.1136/jnnp.62.1.10

Dong X. Current strategies for brain drug delivery. Theranostics, 2018; 8(6):1481-93. https://doi.org/10.7150/thno.21254

Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res, 2014; 355(3):687-99. https://doi.org/10.1007/s00441-014-1811-2

Eugenín J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, Von Bernhardi R. Expression Pattern of scavenger receptors and amyloid-β phagocytosis of astrocytes and microglia in culture are modified by acidosis: implications for Alzheimer's disease. J Alzheimer's Dis, 2016; 53(3):857-73. https://doi.org/10.3233/JAD-160083

Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009; 3(1):16-20. https://doi.org/10.1021/nn900002m

Farooqui AA. Beneficial effects of resveratrol on neurological disorders. In: Farooqui Akhlaq A (ed.). Phytochemicals, signal transduction, and neurological disorders, pp 199-236, 2012. https://doi.org/10.1007/978-1-4614-3804-5_7

Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, Deuschl G, Parmar P, Brainin M, Murray C. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol, 2020; 19(3):255-65. https://doi.org/10.1016/S1474-4422(19)30411-9

Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, Annese T, Di Paola M, Dell'aquila C, De Mari M, Ferranini E, Bonifati V, Pacelli C, Cocco T. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease. Biochim Biophys Acta-Mol Basis Dis [Internet], 2014; 1842(7):902-15. https://doi.org/10.1016/j.bbadis.2014.02.010

Fonseca-Santos B, Gremião MPD, Chorilli M. Nanotechnologybased drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomed, 2015; 10:4981-5003. https://doi.org/10.2147/IJN.S87148

Frozza RL, Bernardi A, Paese K, Hoppe JB, Da Silva T, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol, 2010; 6(6):694-703. https://doi.org/10.1166/jbn.2010.1161

Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C. Lipid-core nanocapsules improve the effects of Resveratrol against Aβ-induced neuroinflammation. J Biomed Nanotechnol. 2013a;9(12):2086-104. https://doi.org/10.1166/jbn.2013.1709

Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matté A, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C. Neuroprotective effects of Resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol, 2013b; 47(3):1066-80. https://doi.org/10.1007/s12035-013-8401-2

Fujimura AT, Martinez RM, Pinho-Ribeiro FA, Lopes Dias Da Silva AM, Baracat MM, Georgetti SR, Verri WA Jr, Chorilli M, Casagrande R. Resveratrol-loaded liquid-crystalline system inhibits UVB-induced skin inflammation and oxidative stress in mice. J Nat Prod, 2016; 79(5):1329-38. https://doi.org/10.1021/acs.jnatprod.5b01132

Fulda S. Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discov Today [Internet], 2010; 15(17-18):757- 65. https://doi.org/10.1016/j.drudis.2010.07.005

Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis [Internet], 2010; 37(1):48-57. https://doi.org/10.1016/j.nbd.2009.07.028

Gejl M, Brock B, Egefjord L, Vang K, Rungby J, Gjedde A. Blood-brain glucose transfer in Alzheimer's disease: effect of GLP-1 analog treatment. Sci Rep, 2017; 7(1):1-10. https://doi.org/10.1038/s41598-017-17718-y

Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S, Chepurnova N, Kreuter J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: Influence of the formulation parameters. Eur J Pharm Biopharm [Internet], 2010; 74(2):157-63. https://doi.org/10.1016/j.ejpb.2009.09.003

Goldberg DM, Yan J, Soleas GJ. Absorption of three winerelated polyphenols in three different matrices by healthy subjects. Clin Biochem, 2003; 36(1):79-87. https://doi.org/10.1016/S0009-9120(02)00397-1

Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano, 2014; 8(3):1958-65. https://doi.org/10.1021/nn501292z

Gomes MJ, Mendes B, Martins S, Sarmento B. Cell-based in vitro models for studying blood-brain barrier (BBB) permeability. Concepts Model Drug Permeability Stud Cell Tissue based Vitr Cult Model, 2016; 169-88. https://doi.org/10.1016/B978-0-08-100094-6.00011-0

Göppert TM, Müller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target, 2005; 13(3):179-87. https://doi.org/10.1080/10611860500071292

Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Jin K, Chen W, Tang H. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surfaces B Biointerfaces [Internet], 2016; 147:376-86. https://doi.org/10.1016/j.colsurfb.2016.08.011

Haque S, Md S, Fazil M, Kumar M, Sahni JK, Ali J, Baboota S. Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic and pharmacodynamic evaluation. Carbohydr Polym [Internet], 2012; 89(1):72-9. https://doi.org/10.1016/j.carbpol.2012.02.051

Hardy J. Alzheimer's disease: the amyloid cascade hypothesis- an update and reappraisal. J Alzheimer's Dis, 2006; 9(SUPPL. 3):151-3. https://doi.org/10.3233/JAD-2006-9S317

Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol, 2006; 34(3):252-69. https://doi.org/10.1080/01926230600713475

He X, Li Z, Rizak JD, Wu S, Wang Z, He R, Su M, Qin D, Wang J, Hu X. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Front Neurosci, 2017; 10(JAN):1-11. https://doi.org/10.3389/fnins.2016.00598

Helbecque N, Amouyel P. Very low density lipoprotein receptor in Alzheimer disease. Microsc Res Tech, 2000; 50:273-7. https://doi.org/10.1002/1097-0029(20000815)50:4<273::AID-JEMT4>3.0.CO;2-0

Heneka MT, Carson MJ, Khoury J El, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. Neuroinflammation in Alzheimer's disease. Lancet Neurol, 2015; 14(4):388-405. https://doi.org/10.1016/S1474-4422(15)70016-5

Hurst S, Loi C-M, Brodfuehrer J, El-Kattan A. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin Drug Metab Toxicol, 2007; 3(4):469-89. https://doi.org/10.1517/17425255.3.4.469

Illum L. Nasal drug delivery-possibilities, problems and solutions. J Control Release, 2003; 87(1-3):187-98. https://doi.org/10.1016/S0168-3659(02)00363-2

Jain K, Mehra N, Jain N. Nanotechnology in drug delivery: Safety and toxicity issues. Curr Pharm Des, 2015; 21(29):4252-61. https://doi.org/10.2174/1381612821666150901103208

Jhang KA, Park JS, Kim HS, Chong YH. Resveratrol ameliorates tau hyperphosphorylation at ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: implication of ERK1/2 and GSK3β signaling cascades. J Agric Food Chem, 2017; 65(44):9626-34. https://doi.org/10.1021/acs.jafc.7b03252

Jiang L, Gao L, Wang X, Tang L, Ma J. The application of mucoadhesive polymers in nasal drug delivery. Drug Dev Ind Pharm, 2010; 36(3):323-36. https://doi.org/10.3109/03639040903170750

Jin F, Wu Q, Lu YF, Gong QH, Shi JS. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. Eur J Pharmacol [Internet], 2008; 600(1-3):78-82. https://doi.org/10.1016/j.ejphar.2008.10.005

Johnson PH, Quay SC. 2005. Available via Johnson_Quay_ NasalDeliveryJunctionTech_ExpOpinDrugDelivery_2005.pdf

Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res, 2004; 1:1-13. https://doi.org/10.1186/1743-8454-1-2

Juan ME, Maijó M, Planas JM. Quantification of transresveratrol and its metabolites in rat plasma and tissues by HPLC. J Pharm Biomed Anal, 2010; 51(2):391-8. https://doi.org/10.1016/j.jpba.2009.03.026

Jung KH, Lee JH, Park JW, Quach CHT, Moon SH, Cho YS, Lee KH. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int J Pharm [Internet]; 2015; 478(1):251-7. https://doi.org/10.1016/j.ijpharm.2014.11.049

Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B [Internet], 2015; 5(5):442-53. https://doi.org/10.1016/j.apsb.2015.07.003

Kalia LV., Lang AE. Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol [Internet], 2016; 12(2):2-3. https://doi.org/10.1038/nrneurol.2015.249

Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release, 2008; 127(2):97-109. https://doi.org/10.1016/j.jconrel.2007.12.018

Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release [Internet], 2017; 268(May):364-89. https://doi.org/10.1016/j.jconrel.2017.09.001

Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, Raza SS, Khan A, Javed H, Vaibhav K, Islam F. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson's disease. Brain Res [Internet], 2010; 1328:139-51. https://doi.org/10.1016/j.brainres.2010.02.031

Khodabandehloo H, Zahednasab H, Hafez AA. Nano-carriers usage for drug delivery in cancer therapy. Int J Cancer Manag, 2016; 9(2). https://doi.org/10.17795/ijcp-3966

Kreuter J. Application of nanoparticles for the delivery of drugs to the brain. Int Congr Ser, 2005; 1277:85-94. https://doi.org/10.1016/j.ics.2005.02.014

Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev [Internet], 2014; 71:2-14. https://doi.org/10.1016/j.addr.2013.08.008

Kim YA, Lim SY, Rhee SH, Park KY, Kim CH, Choi BT, Lee SJ, Park YM, Choi YH. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in β-amyloid-treated C6 glioma cells. Int J Mol Med, 2006; 17(6):1069-75. https://doi.org/10.3892/ijmm.17.6.1069

Kotta S, Mubarak Aldawsari H, Badr-Eldin SM, Alhakamy NA, Md S. Coconut oil-based resveratrol nanoemulsion: optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem, 2021; 357:129721. https://doi.org/10.1016/j.foodchem.2021.129721

Krishnaiah YS. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J Bioequiv Availab, 2010; 02(02):28-36. https://doi.org/10.4172/jbb.1000027

Kumar S, Bhargava D, Thakkar A, Arora S. Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review. Crit Rev Ther Drug Carrier Syst, 2013; 30(3):217-56. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005964

Kundu JK, Shin YK, Kim SH, Surh YJ. Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-κB in mouse skin by blocking IκB kinase activity. Carcinogenesis, 2006; 27(7):1465-74. https://doi.org/10.1093/carcin/bgi349

Langcake P, McCarthy WVM. The relationship of resveratrol production to infection of grapevine leaves by Botrytis cinerea. Vitis, 1979; 18(3):244-53. https://doi.org/10.1016/S0031-9422(00)91470-5

Lindner G da R, Santos DB, Colle D, Moreira ELG, Prediger RD, Farina M, Khalil NM, Mara Mainardes R. Improved neuroprotective effects of poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond). 2015;10(7):1127-38. https://doi.org/10.2217/nnm.14.165

Liu W, Ye A, Liu W, Liu C, Han J, Singh H. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chem [Internet], 2015; 175:16-24. https://doi.org/10.1016/j.foodchem.2014.11.108

Lofrumento DD, Nicolardi G, Cianciulli A, Nuccio F De, Pesa V La, Carofiglio V, Dragone T, Calvello R, Panaro MA. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson's-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun, 2014; 20(3):249-60. https://doi.org/10.1177/1753425913488429

López-Nicolás JM, García-Carmona F. Aggregation state and pKa values of (E)-resveratrol as determined by fluorescence spectroscopy and UV-visible absorption. J Agric Food Chem,2008; 56(17):7600-5. https://doi.org/10.1021/jf800843e

Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MA, Pereira MC. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer's disease. Molecules, 2017; 22(2):1-16. https://doi.org/10.3390/molecules22020277

Lu X, Ji C, Xu H, Li X, Ding H, Ye M, Zhu Z, Ding D, Jiang X, Ding X, Guo X. Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. Int J Pharm, 2009; 375(1-2):89-96. https://doi.org/10.1016/j.ijpharm.2009.03.021

Maiti P, Dunbar GL. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci, 2018; 19(6):1637. https://doi.org/10.3390/ijms19061637

Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem, 2013; 2013:1-18. https://doi.org/10.1155/2013/238428

Marttin E, Schipper NGM, Coos Verhoef J, Merkus FWHM. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev, 1998; 29(1-2):13-38. https://doi.org/10.1016/S0169-409X(97)00059-8

Maussang D, Rip J, van Kregten J, van den Heuvel A, van der Pol S, van der Boom B, Reijerkerk A, Chen L, de Boer M, Gaillard P, de Vries H. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov Today Technol [Internet], 2016; 20:59-69. https://doi.org/10.1016/j.ddtec.2016.09.003

McClure R, Yanagisawa D, Stec D, Abdollahian D, Koktysh D, Xhillari D, Jaeger R, Stanwood G, Chekmenev E, Tooyama I, Gore JC, Pham W. Inhalable curcumin: offering the potential for translation to imaging and treatment of Alzheimer's disease. J Alzheimer's Dis, 2015; 44(1):283-95. https://doi.org/10.3233/JAD-140798

Meredith ME, Salameh TS, Banks WA. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J, 2015; 17(4):780-7. https://doi.org/10.1208/s12248-015-9719-7

Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron [Internet], 2010; 67(6):953-66. https://doi.org/10.1016/j.neuron.2010.08.044

Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-tobrain delivery of drugs. Int J Pharm, 2009; 379(1-2):146-57. https://doi.org/10.1016/j.ijpharm.2009.06.019

Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv, 2014; 21(2):75-86. https://doi.org/10.3109/10717544.2013.838713

Moura RP, Martins C, Pinto S, Sousa F, Sarmento B. Bloodbrain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Deliv [Internet], 2019; 16(3):271-85. https://doi.org/10.1080/17425247.2019.1583205

Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release [Internet], 2013; 166(2):182-94. https://doi.org/10.1016/j.jconrel.2012.12.013

Nasr M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv, 2016; 23(4):1444-52. https://doi.org/10.3109/10717544.2015.1092619

Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev, 2010; 23(4):858-83. https://doi.org/10.1128/CMR.00007-10

Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol [Internet], 2014; 32(1):32-45. https://doi.org/10.1016/j.tibtech.2013.09.007

Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnol, 2016; 1-11. https://doi.org/10.1186/s12951-016-0177-x

Ozsoy Y, Gngör S. Nasal route: an alternative approach for antiemetic drug delivery. Expert Opin Drug Deliv, 2011; 8(11):1439-53. https://doi.org/10.1517/17425247.2011.607437

Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clin Chim Acta, 1995; 235(2):207-19. https://doi.org/10.1016/0009-8981(95)06045-1

Palle S, Neerati P. Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol, 2018; 391(4):445-53. https://doi.org/10.1007/s00210-018-1474-8

Pangeni R, Sharma S, Mustafa G, Ali J, Baboota S. Vitamin e loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson's disease by reducing oxidative stress. Nanotechnology, 2014; 25(48). https://doi.org/10.1088/0957-4484/25/48/485102

Pardeshi C V., Rajput P V., Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv, 2013; 20(1):47-56. https://doi.org/10.3109/10717544.2012.752421

Pardeshi C V., Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified polymer-lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. J Mater Sci Mater Med, 2013; 24(9):2101-15. https://doi.org/10.1007/s10856-013-4965-7

Pardridge WM. Drug and gene targeting to the brain via bloodbrain barrier receptor-mediated transport systems. Int Congr Ser, 2005; 1277:49-62. https://doi.org/10.1016/j.ics.2005.02.011

Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv [Internet], 2016; 13(7):963-75. https://doi.org/10.1517/17425247.2016.1171315

Park K. Nanotechnology: what it can do for drug delivery. J Control Release, 2007; 120(1-2):1-3. https://doi.org/10.1016/j.jconrel.2007.05.003

Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano, 2013; 7(9):7442-7. https://doi.org/10.1021/nn404501g

Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of Resveratrol and other grape-derived polyphenols in Alzheimer's disease prevention and treatment. Biochim Biophys Acta-Mol Basis Dis [Internet], 2014; 1852(6):1202-8. https://doi.org/10.1016/j.bbadis.2014.10.006

Patel JP, Frey BN. Disruption in the blood-brain barrier: the missing link between brain and body inflammation in bipolar disorder? Neural Plast, 2015; 2015:708306. https://doi.org/10.1155/2015/708306

Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev [Internet], 2012; 64(7):701-5. https://doi.org/10.1016/j.addr.2011.12.006

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Kumara Swamy M, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J Nanobiotechnology [Internet], 2018; 16(1):1-33. https://doi.org/10.1186/s12951-018-0392-8

Quadros Gomes BA, Bastos Silva JP, Rodrigues Romeiro CF, dos Santos SM, Rodrigues CA, Gonçalves PR, Sakai JT, Mendes PFS, Varela ELP, Monteiro MC. Neuroprotective mechanisms of resveratrol in Alzheimer's disease: role of SIRT1. Oxid Med Cell Longev, 2018; 2018:8152373. https://doi.org/10.1155/2018/8152373

Rabanel JM, Faivre J, Paka GD, Ramassamy C, Hildgen P, Banquy X. Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: toward a drug delivery nano-platform to the CNS. Eur J Pharm Biopharm, 2015; 96:409-20. https://doi.org/10.1016/j.ejpb.2015.09.004

Rajput A, Bariya A, Allam A, Othman S, Butani SB. In situ nanostructured hydrogel of resveratrol for brain targeting: in vitro-in vivo characterization. Drug Deliv Transl Res, 2018; 8(5):1460-70. https://doi.org/10.1007/s13346-018-0540-6

Rangel-Yagui C de O, Pessoa A, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci, 2005; 8(2):147-63.

Rankovic Z. CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem, 2015; 58(6):2584-608. https://doi.org/10.1021/jm501535r

Rius C, Abu-Taha M, Hermenegildo C, Piqueras L, CerdaNicolas J-M, Issekutz AC, Estañ L, Cortijo J, Morcillo EJ, Orallo F, Sanz M-J. Trans-but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-κB activation and peroxisome proliferator-activated receptor-γ upregulation. J Immunol, 2010; 185(6):3718-27. https://doi.org/10.4049/jimmunol.1001043

Robinson K, Mock C, Liang D. Pre-formulation studies of resveratrol. Drug Dev Ind Pharm, 2015; 41(9):1464-9. https://doi.org/10.3109/03639045.2014.958753

Sabolovic N, Heurtaux T, Humbert AC, Krisa S, Magdalou J. Cis- and trans-resveratrol are glucuronidated in rat brain, olfactory mucosa and cultured astrocytes. Pharmacology, 2007; 80(2-3):185-92. https://doi.org/10.1159/000104149

Samaridou E, Alonso MJ. Nose-to-brain peptide delivery- the potential of nanotechnology. Bioorganic Med Chem [Internet], 2018; 26(10):2888-905. https://doi.org/10.1016/j.bmc.2017.11.001

Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cell Signal [Internet], 2009; 21(11):1541- 7. https://doi.org/10.1016/j.cellsig.2009.03.009

Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm, 2012; 2012:195727. https://doi.org/10.5402/2012/195727

Sawda C, Moussa C, Turner RS. Resveratrol for alzheimer's disease. Ann N Y Acad Sci, 2017; 1403(1):142-9. https://doi.org/10.1111/nyas.13431

Scheepens A, Tan K, Paxton JW. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr, 2010; 5(1):75-87. https://doi.org/10.1007/s12263-009-0148-z

Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur J Pharm Sci [Internet], 2015; 78:54-66. https://doi.org/10.1016/j.ejps.2015.07.002

Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-brandt C, Alyautdin R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002; 10(4):317-25. https://doi.org/10.1080/10611860290031877

Shu XH, Wang LL, Li H, Song X, Shi S, Gu JY, Wu ML, Chen XY, Kong QY, Liu J. Diffusion efficiency and bioavailability of resveratrol administered to rat brain by different routes: therapeutic implications. Neurotherapeutics, 2015; 12(2):491-501. https://doi.org/10.1007/s13311-014-0334-6

Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H. Resveratrol nanoformulation for cancer prevention and therapy. Ann N Y Acad Sci, 2015; 1348(1):20-31. https://doi.org/10.1111/nyas.12811

Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci, 2013; 4(8):1151-62. https://doi.org/10.1021/cn400094w

Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surfaces B Biointerfaces [Internet], 2014; 113:330-7. https://doi.org/10.1016/j.colsurfb.2013.09.030

Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev, 2004; 84(4):1381-478. https://doi.org/10.1152/physrev.00047.2003

Srikanth M, Kessler JA. Nanotechnology-novel therapeutics for CNS disorders. Nat Rev Neurol [Internet], 2012; 8(6):307-18. https://doi.org/10.1038/nrneurol.2012.76

Summerlin N, Soo E, Thakur S, Qu Z, Jambhrunkar S, Popat A. Resveratrol nanoformulations: Challenges and opportunities. Int J Pharm [Internet]; 2015; 479(2):282-90. https://doi.org/10.1016/j.ijpharm.2015.01.003

Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol, 2007; 2(1):1-6. https://doi.org/10.1186/1745-6673-2-16

Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci, 2000; 89(11):1371-88. https://doi.org/10.1002/1520-6017(200011)89:11<1371::AID-JPS1>3.0.CO;2-D

Thakur K, Albanese E, Giannakopoulos, Jette N, Linde M, Prince M, Steiner T, Dua T. Neurological disorders. Dis control priorities, 3rd edition, vol. 4, Ment Neurol Subst Use Disord, pp 87-107, 2016. https://doi.org/10.1596/978-1-4648-0426-7_ch5

Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 2004; 127(2):481-96. https://doi.org/10.1016/j.neuroscience.2004.05.029

Tiwari G, Tiwari R, Bannerjee S, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: an updated review. Int J Pharm Investig, 2012; 2(1):2. https://doi.org/10.4103/2230-973X.96920

Trela BC, Waterhouse AL. Resveratrol: isomeric molar absorptivities and stability. J Agric Food Chem, 1996; 44(5):1253-7. https://doi.org/10.1021/jf9504576

Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev, 2005; 57(11):1640-65. https://doi.org/10.1016/j.addr.2005.07.009

Vanamala J, Reddivari L, Radhakrishnan S, Tarver C. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer, 2010;10:238. https://doi.org/10.1186/1471-2407-10-238

Van Hoogevest P, Liu X, Fahr A. Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Expert Opin Drug Deliv, 2011; 8(11):1481-500. https://doi.org/10.1517/17425247.2011.614228

Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M. Anticancer molecular mechanisms of resveratrol. Front Nutr, 2016; 3(April). https://doi.org/10.3389/fnut.2016.00008

Vijayakumar MR, Kosuru R, Singh SK, Prasad CB, Narayan G, Muthu MS, Singh S. resveratrol loaded PLGA:D-α-tocopheryl polyethylene glycol 1000 succinate blend nanoparticles for brain cancer therapy. RSC Adv, 2016a; 6(78):74254-68. https://doi.org/10.1039/C6RA15408E

Vijayakumar MR, Vajanthri KY, Balavigneswaran CK, Mahto SK, Mishra N, Muthu MS, Singh S. pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surfaces B Biointerfaces [Internet], 2016b; 145:479-91. https://doi.org/10.1016/j.colsurfb.2016.05.037

Vinarov Z, Katev V, Radeva D, Tcholakova S, Denkov ND. Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure. Drug Dev Ind Pharm [Internet], 2018; 44(4):677-86. https://doi.org/10.1080/03639045.2017.1408642

Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, Marambaud P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem, 2010; 285(12):9100-13. https://doi.org/10.1074/jbc.M109.060061

Walle T. Bioavailability of Resveratrol. Ann N Y Acad Sci, 2011; 1215(1):9-15. https://doi.org/10.1111/j.1749-6632.2010.05842.x

Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos, 2004; 32(12):1377-82. https://doi.org/10.1124/dmd.104.000885

Wang Y, Xu H, Fu Q, Ma R, Xiang J. Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. J Neurol Sci [Internet], 2011; 304(1-2): 29-34. https://doi.org/10.1016/j.jns.2011.02.025

Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease-insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol, 2017a; 13(10):612-23. https://doi.org/10.1038/nrneurol.2017.111

Wang Y, Ying X, Xu H, Yan H, Li X, Tang H. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. Int J Nanomedicine, 2017b; 12:1369-84. https://doi.org/10.2147/IJN.S124276

Wang M, Li L, Zhang X, Liu Y, Zhu R, Liu L, Fang Y, Gao Z, Gao D. Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson's disease targeting therapy. ACS Sustain Chem Eng, 2018a; 6(12):17124-33. https://doi.org/10.1021/acssuschemeng.8b04507

Wang Q, Zhang Y, Wong CH, Edwin Chan HY, Zuo Z. Demonstration of direct nose-to-brain transport of unbound HIV-1 replication inhibitor DB213 via intranasal administration by pharmacokinetic modeling. AAPS J, 2018b; 20(1). https://doi.org/10.1208/s12248-017-0179-0

Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, Farid RM, Blanco-Prieto MJ, Billa N, Hanafy AS. Nanotechnology-based drug delivery systems for Alzheimer's disease management: technical, industrial, and clinical challenges. J Control Release [Internet], 2017; 245:95-107. https://doi.org/10.1016/j.jconrel.2016.11.025

Wilkinson K, El Khoury J. Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer's disease. Int J Alzheimers Dis, 2012; 2012:489456. https://doi.org/10.1155/2012/489456

Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release [Internet], 2012; 161(2):264-73. https://doi.org/10.1016/j.jconrel.2011.08.017

Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev [Internet], 2012; 64(7):686-700. https://doi.org/10.1016/j.addr.2011.10.007

Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. NeuroSignals, 2011; 19(3):163-74. https://doi.org/10.1159/000328516

Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med, 2012; 2(1):1-24. https://doi.org/10.1101/cshperspect.a006346

Xi J, Zhang Z, Si XA. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers. Int J Nanomed, 2015; 10:1211-22. https://doi.org/10.2147/IJN.S77520

Xiong S, Liu W, Zhou Y, Mo Y, Liu Y, Chen X, Huafeng P, Dongsheng Y, Qi W, Tongkai C. Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J Pharm Sci [Internet], 2020; 15(4):518-28. https://doi.org/10.1016/j.ajps.2019.04.003

Yu XC, Yang JJ, Jin BH, Xu HL, Zhang HY, Xiao J, Lu CT, Zhao YZ, Yang W. A strategy for bypassing the blood-brain barrier: facial intradermal brain-targeted delivery via the trigeminal nerve. J Control Release [Internet], 2017; 258(January):22-33. https://doi.org/10.1016/j.jconrel.2017.05.001

Zhang F, Wang YY, Liu H, Lu YF, Wu Q, Liu J, Shi JS. Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting astroglial BDNF and GDNF release. Evidence Based Complement Alternat Med, 2012; 2012:937605. https://doi.org/10.1155/2012/937605

Article Metrics

1 Absract views 0 PDF Downloads 1 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required