Abdelbary G, Haider G. In vitro characterization and growth inhibition effect of nanostructured lipid carriers for controlled delivery of methotrexate. Pharm Dev Technol, 2011; 18(5):1159–68. https://doi.org/10.3109/10837450.2011.614251 | | Akhtar J, Fareed S, Aqil M. Stability-indicating assay of repaglinide in bulk and optimized nanoemulsion by validated high performance thin layer chromatography technique. J Pharm Bioallied Sci, 2013; 5(3):184. https://doi.org/10.4103/0975-7406.116800 | | | Akhtar J, Siddiqui HH, Fareed S, Badruddeen MK, Aqil M. Nanoemulsion: for improved oral delivery of repaglinide. Drug Deliv, 2016; 23(6):2026–34. https://doi.org/10.3109/10717544.2015.1077290 | | | Chalikwar SS, Belgamwar VS, Talele VR, Surana SJ, Patil MU. Formulation and evaluation of nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surf B Biointerfaces, 2012; 97:109–16. https://doi.org/10.1016/j.colsurfb.2012.04.027 | | | Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011; 12(1):62–76. https://doi.org/10.1208/s12249-010-9563-0 | | | Das S, Ng WK, Kanaujia P, Kim S, Tan RBH. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerfaces, 2011; 88(1):483–89. https://doi.org/10.1016/j.colsurfb.2011.07.036 | | | Dubey A, Prabhu P, Kamath JV. Nano structured lipid carriers: a novel topical drug delivery system. Int J PharmTech Res, 2011; 4(2):705–14. | | | Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/ stabilizers on physicochemical properties of nanoparticles. Daru, 2015; 23(1):46. https://doi.org/10.1186/s40199-015-0128-3 | | | Gadadare R, Mandpe L, Pokharkar V. Ultra rapidly dissolving Repaglinide nanosized crystals prepared via bottom-up and top-down approach: influence of food on pharmacokinetics behavior. AAPS PharmSciTech, 2015; 16(4):787–99. https://doi.org/10.1208/s12249-014-0267-8 | | | He W, Wu M, Huang S, Yin L. Matrix tablets for sustained release of Repaglinide: preparation, pharmacokinetics and hypoglycemic activity in Beagle dogs. Int J Pharm 2015; 478(1):297–307. https://doi.org/10.1016/j.ijpharm.2014.11.059 | | | Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems—a review (Part 1). Trop J Pharm Res 2013; 12(2):255–64. | | | Hu S, Wang S, Fanelli B, Bell PA, Dunning BE, Geisse S, et al. Pancreatic beta-cell K (ATP) channel activity and membrane-binding studies with nateglinide: a comparison with sulfonylureas and Repaglinide. J Pharmacol Exp Ther, 2000; 293(2):444–52. | | | Kamble MS, Borwandkar VG, Bodade SS, Aute PP, Chaudhari PD, Bhosale AV. Optimization of self-nanoemulsifying drug delivery system (SNEDDS) of Repaglinide using D-optimal mixture experimental design. J Biomed Pharm Res, 2013; 2(3):100–8, 109. | | | Kassem, AA, Abd El-Alim SH, Basha M, Salama A. Phospholipid complex enriched micelles: a novel drug delivery approach for promoting the antidiabetic effect of Repaglinide. Eur J Pharm Sci, 2017; 99:75–84. https://doi.org/10.1016/j.ejps.2016.12.005 | | | Kramer CK, Zinman B, Gross JL, Canani LH, Rodrigues TC, Azevedo MJ, et al. Coronary artery calcium score prediction of all cause mortality and cardiovascular events in people with type 2 diabetes: systematic review and meta-analysis. BMJ, 2013; 346(1):1654–4. https://doi.org/10.1136/bmj.f1654 | | | Kumar GSS, Talsania MP, Goli D, Karki R. Formulation and optimization of nanostructured lipid matrices of Repaglinide using factorial design. World J Pharm Pharm Sci, 2013; 2(6):5521–37. | | | Luo YF, Chen DW, Ren LX, Zhao XL, Qin J. Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. J Control Release, 2006; 114(1):53–9. https://doi.org/10.1016/j.jconrel.2006.05.010 | | | Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm, 2007; 330(1–2):155–63. https://doi.org/10.1016/j.ijpharm.2006.09.025 | | | Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Phar Sci, 2017; 12(6):532–41. https://doi.org/10.1016/j.ajps.2017.07.002 | | | Purvis T, Mattucci ME, Crisp MT, Johnston KP, Williams RO. Rapidly dissolving Repaglinide powders produced by the ultra-rapid freezing process. AAPS PharmSciTech, 2017; 8(3):E58. | | | Sanad RA, Abdelmalak NS, Elbayoomy TS, Badawi AA. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs). AAPS PharmSciTech, 2010; 11(4):1684–94. https://doi.org/10.1208/s12249-010-9553-2 | | | Sangsen Y, Laochai P, Chotsathidchai P, Wiwattanapatapee R. Effect of solid lipid and liquid oil ratios on properties of nanostructured lipid carriers for oral curcumin delivery. Adv Mat Res, 2014; 1060:62–5. https://doi.org/10.4028/www.scientific.net/AMR.1060.62 | | | Siepmann J, Peppas NA. Higuchi equation: derivation, applications, use and misuse. Int J Pharm, 2011; 418(1):6–12. https://doi.org/10.1016/j.ijpharm.2011.03.051 | | | Swidan SA, Ghonaim HM, Samy AM, Ghorab MM. Efficacy and in vitro cytotoxicity of nanostructured lipid carriers for paclitaxel delivery. J Appl Pharm Sci, 2016; 6(9):018–26. https://doi.org/10.7324/JAPS.2016.60903 | | | Tan SW, Billa N, Roberts CR, Burley JC. Surfactant effects on the physical characteristics of amphotericin B-containing nanostructured lipid carriers. Colloids Surf A Physicochem Eng Aspects, 2010; 372(1–3):73–9. https://doi.org/10.1016/j.colsurfa.2010.09.030 | | | Teeranachaideekul V, Boonme P, Souto EB, Müller RH, Junyaprasert VB. Influence of oil content on physicochemical properties and skin distribution of nile red-loaded NLC. J Control Release, 2008; 128(2):134–41. https://doi.org/10.1016/j.jconrel.2008.02.011 | | | Teeranachaideekul V, Souto EB, Junyaprasert VB, Müller RH. Cetyl palmitate-based NLC for topical delivery of coenzyme Q10— development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm, 2007; 67(1):141–8. https://doi.org/10.1016/j.ejpb.2007.01.015 | | | Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release, 2004; 95(3):627–38. https://doi.org/10.1016/j.jconrel.2004.01.005 | | | Vera Candioti L, De Zan MM, Cámara MS, Goicoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 2014; 124:123–38. https://doi.org/10.1016/j.talanta.2014.01.034 | | | Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm, 2014; 86(1):7–22. https://doi.org/10.1016/j.ejpb.2013.08.013 | | | Yang Y, Corona A, Schubert B, Reeder R, Henson MA. The effect of oil type on the aggregation stability of nanostructured lipid carriers. J Colloid Interface Sci, 2014; 418:261–72. https://doi.org/10.1016/j.jcis.2013.12.024 | | | Yu H, Huang Q. Bioavailability and delivery of nutraceuticals and functional foods using nanotechnology. Bio-Nanotechnol Revol Food Biomed Health Sci, 2013; 593–604. https://doi.org/10.1002/9781118451915.ch35 | | | Zeng N, Hu Q, Liu Z, Gao X, Hu R, Song Q, et al. Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. Int J Pharm, 2012; 424(1–2):58–66. https://doi.org/10.1016/j.ijpharm.2011.12.058 | | | Zhu H, Zhang X, Li M-Z, Xie J, Yang X-L. Prevalence of type 2 diabetes and pre-diabetes among overweight or obese children in Tianjin, China. Diab Med J Br Diab Assoc, 2013; 30(12):1457–65. https://doi.org/10.1111/dme.12269 | | |
|