Research Article | Volume: 8, Issue: 9, September, 2018

Scopoletin from Lasianthus lucidus Blume (Rubiaceae): A potential antimicrobial against multidrug-resistant Pseudomonas aeruginosa

Tiwtawat Napiroon Markus Bacher Henrik Balslev Kwankamol Tawaitakham Wichai Santimaleeworagun Srunya Vajrodaya   

Open Access   

Published:  Sep 30, 2018

DOI: 10.7324/JAPS.2018.8901
Abstract

A bioassay-guided study of stem bark lipophilic extracts led to the isolation of a bioactive compound from Lasianthus lucidus Blume species related to traditional medicine for treatment of wound infections, bleeding, and fevers. Scopoletin (7-hydroxy-6-methoxycoumarin) could be isolated from stem bark extract yielding 1.4 μmol/g by dry weight. The minimum inhibitory concentrations of extracts and scopoletin proved to be effective against both strains of Pseudomonas aeruginosa ATCC 27853 (AmpC β-lactamase producing strain) and P. aeruginosa DMSC 37166 (clinical strain). They revealed the highest antibacterial effect at 128 μg/ml and morphological changes on bacterial cells were demonstrated by Field Emission Scanning Electron Microscope. The lipophilic extracts and the purified scopoletin from L. lucidus have clear antibacterial activities, especially acting against P. aeruginosa strains. They produce cell lysis, inflated swelling cell walls and cell walls sinking into cells in the same way.


Keyword:     EthnomedicinesInfectious diseasesScopoletinLasianthus.


Citation:

Napiroon T, Bacher M, Balslev H, Tawaitakham K, Santimaleeworagun W, Vajrodaya S. Scopoletin from Lasianthus lucidus Blume (Rubiaceae): A potential antimicrobial against multidrug-resistant Pseudomonas aeruginosa. J App Pharm Sci, 2018; 8(09): 001-006.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Adesina SK. Studies on a nigerian herbal anticonvulsant recipe. Int J Crude Drug Res, 1982; 20:93-100. https://doi.org/10.3109/13880208209083295

Booth NL, Nikolic D, Richard B, Breemen V, Geller SE, Banuvar S, Shulman LP, Farnsworth NR. Confusion regarding anticoagulant coumarins in dietary supplements. Clin Pharmacol Ther, 2004; 76:511-16. https://doi.org/10.1016/j.clpt.2004.08.023

Cai ZQ, Rijkers T, Bongers F. Phytosynthetic acclimation to light changes in tropical monsoon forest woody species differing in adult stature. Tree Physiol, 2005; 25:1023-1031. https://doi.org/10.1093/treephys/25.8.1023

Cardozo VF, Oliveira AG, Nishio EK, Perugini MR, Andrade CG, Silveira WD, Durán N, Andrade G, Kobayashi RKT, Nakazato G. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob, 2013; 12:1-8. https://doi.org/10.1186/1476-0711-12-12

Chang WC, Wu SC, Xu KD, Liao BC, Wu JF, Cheng AS. Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation. Molecules, 2015; 20:2786-801. https://doi.org/10.3390/molecules20022786

Dai Y, Liu Y, Rakotondraibe LH. Novel bioactive natural products isolated from Madagascar plants and marine organism (2009- 2017). Chem Pharm Bull, 2018; 66(5):469-482. https://doi.org/10.1248/cpb.c17-00395

Deng S, Palu AK, West BJ, Su CX, Zhou BN, Jensen JC. Lipoxygenase inhibitory constituents of the Fruits of Noni (Morinda citrifolia ) collected in Tahiti. J Nat Prod, 2007; 70:859-62. https://doi.org/10.1021/np0605539

Ferdinal N, Alfajri R, Arifin B. Isolation and characterization of scopoletin from the bark of fagraea ceilanica Thumb and Antioxidants tests. IJASEIT. 2015; 5:126-130. https://doi.org/10.18517/ijaseit.5.2.504

Gnonlonfin GJB, Sanni A, Brimer L. Review Scopoletin – A Coumarin Phytoalexin with Medicinal Properties. Crit Rev Plant Sci, 2012; 31:47-56. https://doi.org/10.1080/07352689.2011.616039

Handy ESC, Pukui MK, Livermore K. 1934. Outline of Hawaiian Physical Therapeutics. Hawaii, USA: Bernice P. Bishop Museum Bulletin.

Hayes MV, Orr DC. Mode of action of ceftazidime: affinity for the penicillin-binding proteins of Escherichia coli K12, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother, 1983; 12:119-126. https://doi.org/10.1093/jac/12.2.119

Ishikura N, Sugahara K, Kurosawa K. Eriodictyol-7-glucoside and Other Phenolics in the Blue Fruits of Lasiauthus japonica. Notizen, 1979; 34:628-629. https://doi.org/10.1515/znc-1979-7-822

Kupiec T. Quality-control analytical method: High-performance liquid chromatography. Int J Pharm Compd, 2004; 8:223-227.

Lukasz C, Monika WH. Two-dimensional thin-layer chromatography in the analysis of secondary plant metabolites. J Chromatogr, 2009; 1216:1035-1052. https://doi.org/10.1016/j.chroma.2008.12.057

McClatchey W. From Polynesian healers to health food stores: changing perspectives of Morinda citrifolia (Rubiaceae). Integr Cancer Ther, 2002; 1:110-20. https://doi.org/10.1177/1534735402001002002

Moon PD, Lee BH, Jeong HJ, An HJ, Park SJ, Kim RH, Ko SG, Um JY, Hong SH, Kim HM. Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IkB/NF-kB signal cascade in the human mast cell line HMC-1. Eur J Pharmacol, 2007; 555:218-25. https://doi.org/10.1016/j.ejphar.2006.10.021

More G, Lall N, Hussein A, Tshikalange TE. Antimicrobial Constituents of Artemisia afra Jacq. ex Willd. against Periodontal Pathogens. Complementary Altern Med, 2012; 2012:1-7.

Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol, 2014; 4:1-8. https://doi.org/10.3389/fmicb.2013.00422

Murray RDH, Mendez J, Brown SA. 1982. The Natural Coumarins.Occurrence, Chemistry and Biochemistry. Chichester, UK: John Wiley and Sons.

Napiroon T, Balslev H, Duangjai S, Sookchaloem D, Chayamarit K, Santimaleeworagun W, Vajrodaya S. Southeast Asian J Trop Med Public Health, 2017a; 48:117-123.

Napiroon T, Vajrodaya S, Santimaleeworagun W, Balslev H, Chayamarit K. Antibacterial Activity of Three Medicinal Lasianthus (Rubiaceae) Extracts on Human Resistant Pathogenic Bacteria. Eur Exp Biol, 2017b; 7(6):1-7. https://doi.org/10.21767/2248-9215.100037

Nawrot DA, Randrianarivelojosia M, Langat MK, Mulholland DA. Coumarins from the Malagasy Cedrelopsis rakotozafyi Cheek and Lescot (Rutaceae). Biochem Syst Ecol, 2013; 50:452-454. https://doi.org/10.1016/j.bse.2013.06.007

Obasi SC, Njoku OU, Obidoa O, Ononogbu IC. Effects of single oral doses of scopoletin and aflatoxin B1 on the bleeding time, serum cholesterol and phospholipid levels of guinea pigs. Nutr Res, 1996; 16:667-72. https://doi.org/10.1016/0271-5317(96)00044-9

Official Journal of the European Union, Commission Decision of 5 June 2003 authorising the placing on the market of "noni juice" (juice of the fruit of Morinda citrifolia L.) as a novel food ingredient under Regulation (EC) No 258/97. 2003. Available at: https://publications. europa.eu/en/publication-detail/-/publication/cbc08fa3-7b1e-485c-9ee5- dcbc474b9f23/language-en. [Accessed 5 April 2018].

Ojewole JAO, Adesina SK. Cardiovascular and neuromuscular actions of scopoletin from Tetrapleura tetraptera. Planta Med, 1983; 49:99- 102. https://doi.org/10.1055/s-2007-969824

Panda S, Kar A. Isolation of scopoletin from Aegle marmelose leaves and evaluation of its antithyroidal, antioxidative and antihyperglycemic potential in hyperthyroid rats. Phytother Res, 2006; 20:1103-5. https://doi.org/10.1002/ptr.2014

Rai PK, Lalramnghinglova H, Threatened and less known ethnomedicinal plants of an Indo-Burma hotspot region: conservation implications. Environ Monit Assess, 2011; 178:53-62. https://doi.org/10.1007/s10661-010-1670-6

Robbrecht E. Tropical woody Rubiaceae. Opera bot, 1988; 1:132-193.

Souza SM, Monacheb FD, Artur SJ. Antibacterial Activity of Coumarins Z Naturforsch C, 2005; 60c:693-700. https://doi.org/10.1515/znc-2005-9-1006

Tal B, Robeson DJ. The induction, by fungal inoculation of ayapin and scopoletin biosynthesis in Helianthus annuus. Phytochemistry, 1985; 25:77-9. https://doi.org/10.1016/S0031-9422(00)94505-9

Vajrodaya S. 1998. Comparative phytochemistry analyses within the genus Glycosmis (Rutaceae-Citroideae). Doctoral Dissertation. Vienna, Austria: University of Vienna.

Vajrodaya S, Bacher M, Greger H, Hofer O. Organ-specific chemical differences in Glycosmis trichantera. Phytochemistry, 1998; 48:897-902. https://doi.org/10.1016/S0031-9422(97)00986-2

Vasconcelos JMJ., Silva AMS., Cavalejro JAS. Chromosones and flavanones from Artemisia campestris subsp. Maritima. Phytochemistry, 1998; 49:1423-24. https://doi.org/10.1016/S0031-9422(98)00180-0

World Health Organization (WHO). 2017. WHO publishes list of bacteria for which new antibiotics are urgently needed. [ONLINE] Available at: http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. [Accessed 12 March 2018].

Xia Y, Dai Y, Wang Q, Liang H. Determination of scopoletin in rat plasma by high performance liquid chromatography method with UV detection and its application to a pharmacokinetic study. J Chromatogr B, 2007; 857:332-6. https://doi.org/10.1016/j.jchromb.2007.07.023

Zhu H, Roos MC, Ridsdale CE. A taxonomic revision of the Malesian species of Lasianthus (Rubiaceae). Blumea, 2012; 57:1-102. https://doi.org/10.3767/000651912X652012

Article Metrics
828 Views 163 Downloads 991 Total

Year

Month

Related Search

By author names