Ahmed EMJ. Hydrogel Preparation, characterization, and applications. A review. Adv. Res, 2015; 6:105. https://doi.org/10.1016/j.jare.2013.07.006 |
|
Arias JL. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems, Molecules, 2008; 13:2340. https://doi.org/10.3390/molecules13102340 | |
|
Arkenau H, Bermann A, Rettig K, Strohmeyer G, Porschen R. 5-Fluorouracil plus leucovorin is an effective adjuvant chemotherapy in curatively resected stage III colon cancer: long-term follow-up results of the adjCCA-01 trial. Ann. Oncol, 2003; 14:395. https://doi.org/10.1093/annonc/mdg100 | |
|
Bayliss CE, Houston AP. Degradation of guar gum by faecal bacteria. Appl Environ Microbiol, 1986; 48:626. | |
|
Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels a versatile nanoscopic drug delivery platform. Adv Drug Delivery Rev, 2012; 64:836. https://doi.org/10.1016/j.addr.2012.02.002 | |
|
Chandra Sekhar E, Krishna Rao KSV, MadhuSudana Rao K, Eswaramma K, Ramesh Raju SR. Development of Gelatin-Lignosulfonic acid Blend Microspheres for ControlleRelease of an Anti-Malarial Drug (Pyronaridine). Indian J Adv Chem Sci, 2014; 3:25. | |
|
Depani BP, Naik AA, Nair HA. Preparation and evaluation of chitosan based thermoreversible gels for intraperitoneal delivery of 5-fluorouracil (5-FU). Acta Pharm, 2013; 63:479. https://doi.org/10.2478/acph-2013-0033 | |
|
Dürig T, Fassihi R. Guar-based monolithic matrix systems: effect of ionizable and nonionizable substances and excipients on gel dynamics and release kinetics. J. Control. Release, 2002; 80:45. https://doi.org/10.1016/S0168-3659(01)00546-6 | |
|
Garcia O, Trigo RM, Blanco MD, Teijon JM. Influence of degree of crosslinking on 5-fluorouracil release from poly (2-hydroxyethyl methacrylate) hydrogels. Biomaterials, 1994; 15:689. https://doi.org/10.1016/0142-9612(94)90167-8 | |
|
Ho YC, Mi FL, Sung HW, Kuo PL, Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Int J Pharm, 2009; 376:69-75. https://doi.org/10.1016/j.ijpharm.2009.04.048 | |
|
Hoare TR, Kohane DS. Hydrogels in drug delivery Progress and challenges. Polymer, 2008; 49:1993. https://doi.org/10.1016/j.polymer.2008.01.027 | |
|
Huang L, Kerns RJ. Diversity-oriented chemical modification of heparin Identification of charge-reduced N-acyl heparin derivatives having increased selectivity for heparin-binding proteins. Bioorg. Med. Chem, 2006; 14:2300. https://doi.org/10.1016/j.bmc.2005.11.013 | |
|
Krishnaiah YSR, Satyanarayana S, Prasad RYV, Rao SN. Gammascintigraphic studies on guargum matrix tablets for colon-specific drug delivery in healthy subjects. J. Control. Rel, 1998; 55:245. https://doi.org/10.1016/S0168-3659(98)00057-1 | |
|
Lakshmi Narayana Reddy C, Krishna Rao KSV, Rama Subba Reddy P, Subha MCS, Christophe, Sodium Alginate-g-Acrylamide and PEG Blend Beads: Development and Controlled Release of Enalapril Maleate. Indian J Adv. Chem. Sci., 2014; 2:82-189 | |
|
Li H, Yu T, Li S, Qin L, Ning J. Preparation and drug-releasing properties of chitosan-based thermosensitive composite hydrogel. J. Korean Chem. Soc, 2012; 56:473. https://doi.org/10.5012/jkcs.2012.56.4.473 | |
|
Li L, Moon HT, Park JY, Heo YJ, Choi Y, Tran TH, Lee Yk, Kim SY, Huh KM. Heparin-based self-assembled nanoparticles for photodynamic therapy. Macromol. Res, 2011; 19:487. https://doi.org/10.1007/s13233-011-0505-9 | |
|
Mallikarjuna B, Madhusudana Rao K, Sudhakar P, Chowdoji Rao K, Subha MCS. Chitosan Based Biodegradable Hydrogel Microspheres for Controlled Release of an Anti HIV Drug. Indian J Adv. Chem. Sci, 2013; 1:144. | |
|
Mihye K, Ji Youn L, Caroline NJ, Alexander R, Giyoong T. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials, 2010; 31:3596. https://doi.org/10.1016/j.biomaterials.2010.01.068 | |
|
Minekus M, Jelier M, Xiao JZ, Kondo S, Iwatsuki K, Kokubo S, Bos M, Dunnewind B, Havenaar R. Effect of partially hydrolyzed guar gum (PHGG) bioaccessibility of fat and cholesterol. Biosci. Biotechnol. Biochem, 2005; 69:932. https://doi.org/10.1271/bbb.69.932 | |
|
Mousa SA, Petersen LJ. Thromb. Anti-cancer properties of low-molecular-weight heparin: preclinical evidence. Haemostasis, 2009; 102:258. https://doi.org/10.1160/TH08-12-0832 | |
|
Mudgil D, Barak S, Khatkar BS. Guar gum: processing, properties and food applications a Review. J. food Sci. Technol, 2014; 51:409. https://doi.org/10.1007/s13197-011-0522-x | |
|
Najaf Iqbal Dure, Akbar Hussain Erum. Physiochemical and pharmaceutical properties of Guar gum derivatives. Report and Opinion, 2010; 2:10. | |
|
Naoi S, Hatakeyama T, Hatakeyama H. Phase transition of locust beangum-, tara gum- and guar gum-water system. J. Therm. Anal. Calorim, 2002; 70:841. https://doi.org/10.1023/A:1022260304686 | |
|
Neufeld L, Bianco-Peled H. Pectin-chitosan physical hydrogels as potential drug delivery vehicles. Int J Biol Macromol, 2017; 101:852. https://doi.org/10.1016/j.ijbiomac.2017.03.167 | |
|
Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci, 2008; 33:448. https://doi.org/10.1016/j.progpolymsci.2008.01.002 | |
|
Prabhanjan H, Gharia MM, Srivastava HC. Guar gum derivatives. Part I Preparation and properties. J Carbohydrate Polymers, 1989; 11(4):279. https://doi.org/10.1016/0144-8617(89)90003-9 | |
|
Pulat M, Eksi H. Determination of swelling behaviour and morphological properties of poly(acrylamide-coitaconic acid) and poly(acrylic acid-co-itaconic acid) copolymeric hydrogels. J. Appl. Polym. Sci, 2006; 102(6):5994. https://doi.org/10.1002/app.25182 | |
|
Reddy NS, Rao KK. Polymeric hydrogels: recent advances in toxic metal ion removal and anticancer drug delivery applications. Indian J. Adv. Chem. Sci, 2016; 4:214. | |
|
Ritger PL, Peppas NA, Simple equation for description of solute release. Part 1 Fickian and non Fickian release from non swellable devices in the form of slab, spheres, cylinders or disk. J Control Release, 1987; 5:23. https://doi.org/10.1016/0168-3659(87)90034-4 | |
|
Santi DV, McHenry CS, Raines RT, Ivanetich KM. Kinetics and thermodynamics of the interaction of 5-fluoro-2'-deoxyuridylate with thymidylate synthase. Biochemistry, 1987; 26:8606. https://doi.org/10.1021/bi00400a017 | |
|
Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methyl cellulose, Adv Drug Delivery Rev, 2001; 48:139. https://doi.org/10.1016/S0169-409X(01)00112-0 | |
|
Siva Prasad S, Madhusudhana Rao K, Rama Subba Reddy P, Sivagangi Reddy N, Krishna Rao KSV, Subha MCS. Synthesis and Characterisation of Guar Gum-g-Poly(Acrylamidoglycolic acid) by Redox Initiator. Indian J Adv Chem Sci, 2012; 1:28. | |
|
Veerapratap S, Prabhakar MN, Chandrasekhar M, Kumarababu P, Maruthi Y, Subha MCS, Song JL, Chowdoji Rao K, Preparation of Biodegradable Polymeric Blend Microspheres of Soy Protein Isolate/Guar Gum and Release Studies of Tolterodine Drug. Indian J Adv. Chem. Sci., 2015; 3:171-177. | |
|
Wang Q, PREllis SB. Ross murphy. Dissolution kinetics of guar gum powders-II. Effects of concentration and molecular weight. J Carbohydrate Polym, 2003; 53(1):75. https://doi.org/10.1016/S0144-8617(03)00009-2 | |
|