Research Article | Volume: 8, Issue: 8, August, 2018

Ichthyotoxic principles against zebrafish embryos from the Indonesian marine sponge Neopetrosia chaliniformis

Novriyandi Hanif Resi Ardianti Peni Ahmadi Andi Setiawan Kusdiantoro Mohamad Nicole J. de Voogd Anggia Murni Junichi Tanaka   

Open Access   

Published:  Aug 31, 2018

DOI: 10.7324/JAPS.2018.8807
Abstract

Endophytic the chemical ecology of Neopetrosia chaliniformis has never been studied before. A study on the extract of the Indonesian marine sponge N. chaliniformis for the ichthyotoxicity including its teratogenic effect against zebrafish (Danio rerio) embryos led to the identification of oxaquinolizidine alkaloids araguspongines C (1) and D (2). Their structure and conformation were determined on the basis of spectroscopic method and molecular modeling analysis. The ichthyotoxicity araguspongines fraction against zebrafish embryos showed LC50 4.3 μg/ml (death, 48-hours post fertilization (hpf)) and 3.6 μg/ml (death, 72 hpf) as well as observation of its teratogenic effects including death, coagulation egg, tail, notochord, heart malformation, and yolk-sac edema at 24, 48, and 72 hpf. Because 76% cell death malformations in zebrafish embryos was observed, araguspongine rich fraction may serve as antimitotic-like drug in the treatment of cancer.


Keyword:     OxaquinolizidineNeopetrosia chaliniformisNMRmolecular modelingzebrafish embryos.


Citation:

Hanif N, Ardianti R, Ahmadi P, Setiawan A, Mohamad K, de Voogd NJ, Murni A, Tanaka J. Ichthyotoxic Principles against Zebrafish Embryos from the Indonesian Marine Sponge Neopetrosia chaliniformis. J App Pharm Sci, 2018; 8(08): 044- 048.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Aston M, Dankert, EN, Alam SkK, Hoeppner LH. Fishing for cures: the allure of using zebrafish to develop precision on oncology therapies. npj Precision Oncology, 2017, 1; 39; 1-14.

Bai H, Kong WW, Shao CL, Li Y, Liu YZ, Liu M, Guan FF, Wang CY. Zebrafish embryo toxicity microscale model for ichthyotoxicity evaluation of marine natural products. Mar Biotechnol, 2016; 18; 264-270.https://doi.org/10.1007/s10126-016-9688-6

Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine Natural Products. Nat Prod Rep, 2013; 30; 237-323 and other reviews of this series.

Freeman CJ, Thacker RW. Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr, 2011, 56, 1577-1586.https://doi.org/10.4319/lo.2011.56.5.1577

Grunwald DJ, Eisen JS. Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet, 2002; 3; 717-724.https://doi.org/10.1038/nrg892

Hanif N, Murni A, Yamauchi M, Higashi M, Tanaka J. A new trinor-guaiane sesquiterpene from an Indonesian soft coral Anthelia sp. Nat Prod Commun, 2015; 10: 1907-1910.

Kobayashi M. Kawazoe K, Kitagawa I. Araguspongines B, C, D, E, F, G, H, and J, new vasodilative bis-1-oxaquinolizidine alkaloids from an okinawan marine sponge, Xestospongia sp. Chem Pharm Bull, 1989; 37: 1676-1678.https://doi.org/10.1248/cpb.37.1676

Kobayashi M, Miyamoto Y, Aoki S, Murakami N, Kitagawa I, In Y, Ishida T. Isomerization of dimeric 2,9-disubitituted 1-oxa-quinolizidine alkaloids and structural revision of araguspongines B and E, isolated from a marine sponge of Xestospongia sp. Heterocycles, 1998, 47: 195-203.https://doi.org/10.3987/COM-97-S(N)4

Leone PD, Carroll AR, Towerzey L, King G, McArdle BM, Kern G, Fisher S, Hooper JNA, Quinn RJ. Exiguaquinol: a novel pentacyclic hydroquinone from Neopetrosia exigua that inhibits Helicobacter pylori MurI. Org Lett, 2008; 10: 2585-2588.https://doi.org/10.1021/ol800898z

Li Y, Qin S, Guo YW, Gu YC, van Soest RWM. 9'-Epi-3β,3'β- dimethylxestospongin C, a new macrocylic diamine alkaloid from the Hainan Sponge Neopetrosia exigua. Planta Med. 2011; 77: 179-181.https://doi.org/10.1055/s-0030-1250164

Liang Z, Sulzmaier FJ, Yoshida WY, Kelly M, Ramos JW, Williams PG. Neopetrocyclamines A and B, polycyclic diamine alkaloids from the sponge Neopetrosia cf exigua. J Nat Prod, 2015; 78:543-547.https://doi.org/10.1021/np500759r

Lieschke GJ, Currie PD. Animal models of human disease: Zebrafish swim into view. Nat Rev Genet, 2007; 8; 353-367.https://doi.org/10.1038/nrg2091

Liu H, Mishima Y, Fujiwara T, Nagai H, Kitazawa A, Mine Y, Kobayashi H, Yao X, Yamada J, Oda T, Namikoshi M. Isolation of araguspongine M, a new stereoisomer of an araguspongine/xestospongin alkaloid, and dopamine from the marine sponge Neopetrosia exigua collected in Palau. Mar Drugs, 2004; 2: 154-163.https://doi.org/10.3390/md204154

Morinaka BI, Molinski TF. Xestoproxamines A-C from Neopetrosia proxima. Assignment of absolute stereostructure of bis-piperidine alkaloids by integrated degradation-CD analysis J Nat Prod, 2011; 74: 430-440.https://doi.org/10.1021/np1008637

Moon HS, Jacobson EM, Khersonsky SM, Luzung MR, Walsh DP, Xiong W.; Lee JW, Parikh PB, Lam JC, Kang TW, Rosania GR, Schier AF, Chang YT. A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening. J Am Chem Soc, 2002; 124: 11608-11609.https://doi.org/10.1021/ja026720i

Oku N, Matsunaga S, van Soest RWM, Fusetani N. Renieramycin J. A highly cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp. J Nat Prod, 2003; 66: 1136-1139.https://doi.org/10.1021/np030092g

Orabi KY, El Sayed KA, Hamann MT, Dunbar DC, Al Said MS, Higa T, Kelly M. Araguspongines K and L, new bioactive bis- 1-oxaquinolizidine N-Oxide alkaloids from Red Sea specimens of Xestospongia exigua. J Nat Prod, 2002; 65: 1782-1785.https://doi.org/10.1021/np0202226

Shubina LK, Makarieva TN, Yashunsky DV, Nifantiev NE, Denisenko VA, Dmitrenok PS, Dyshlovoy SA, Fedorov SN, Krasokhin VB, Jeong SH, Han J, Stonik VA. Pyridine nucleosides neopetrosides A and B from a marine Neopetrosia sp. sponge. Synthesis of neopetroside A and its β-riboside analogue. J Nat Prod, 2015; 78:1383-1389.https://doi.org/10.1021/acs.jnatprod.5b00256

Skropeta D, Wei L. Recent advances in deep-sea natural products. Nat Prod Rep, 2014; 31: 999-1025.https://doi.org/10.1039/C3NP70118B

Sorek H, Rudi A, Benayahu Y, Kashman Y. Njaoamines G and H, two new cytotoxic polycyclic alkaloids and a tetrahydroquinolone from the marine sponge Neopetrosia sp. Tetrahedron Lett. 2007; 48: 7691-7694.https://doi.org/10.1016/j.tetlet.2007.08.079

Wei X, Nieves K, Rodriguez AD. Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean Sea sponge Neopetrosia proxima. Bioorg Med Chem Lett, 2010; 20: 5905-5908.https://doi.org/10.1016/j.bmcl.2010.07.084

William DE, Austin P, Diaz-Marero AR, van Soest R, Matainaho T, Roskelley CD, Roberge M, Andersen RJ. Neopetrosiamides, peptides from the marine sponge Neopetrosia sp. that inhibit amoeboid invasion by human tumor cells. Org Lett, 2005; 7: 4173-4176.https://doi.org/10.1021/ol051524c

Winder PL, Baker HL, Linley P, Guzman EA, Pomponi SA, Diaz MC, Reed JK, Wright AE. Neopetrosiquinones A and B, sesquiterpene benzoquinones isolated from the deep-water sponge Neopetrosia cf. proxima. Bioorg Med Chem, 2011; 19: 6599-6603.https://doi.org/10.1016/j.bmc.2011.09.026

Qaralleh H, Idid S, Saad S, Susanti D, Taher M, Khleifat K. Antifungal and antibacterial activities of four Malaysian sponge species (Petrosiidae). J Med Mycol, 2010; 20: 315-320.https://doi.org/10.1016/j.mycmed.2010.10.002

van Vuuren RJ, Visagie MH, Theron AE. Antimitotic drug in the treatment of cancer. Cancer Chemother Pharmacol, 2015; 76:1101-1112.https://doi.org/10.1007/s00280-015-2903-8

Zon LI, Peterson R. In vivo drug discovery in the zebrafish. Nat Rev Drug Discovery, 2005; 4: 35-44.https://doi.org/10.1038/nrd1606

Article Metrics
1318 Views 84 Downloads 1402 Total

Year

Month

Related Search

By author names