Hypoglycemic potential of Sargassum spp.: A review of bioactive compounds for diabetes management

Muhamad Firdaus Ahmad Faris Priambodo   

Open Access   

Published:  Oct 11, 2025

DOI: 10.7324/JAPS.2026.234652
Abstract

Diabetes mellitus is a rapidly growing global health challenge, and the side effects of current pharmacotherapies have intensified the search for safer anti-hyperglycemic options. Brown seaweeds of the genus Sargassum contain diverse bioactive constituents with promising glucose-lowering activity. This review systematically evaluates the hypoglycemic effects of Sargassum bioactive compounds by analyzing studies retrieved from PubMed, Scopus, and Web of Science (2014–2024; OSF registration ID osf-registration-2yp8v-v1). Sixteen pre-clinical investigations that met predefined criteria were appraised with the Mixed Methods Appraisal Tool, and their data were coded and synthesized qualitatively in NVivo. Extracts from eleven Sargassum species lowered fasting or post-prandial glucose, enhanced insulin sensitivity, and improved lipid profiles in rodent models. Key constituents—polyphenols, terpenoids, polysaccharides, and polyunsaturated fatty acids—acted by inhibiting α-glucosidase/α-amylase, promoting GLUT4 translocation, and attenuating oxidative stress signaling. No meta-analysis was feasible because of heterogeneity in study design, and the evidence remains limited to animal models, underscoring the need for well-designed human trials and dose-response studies before pharmaceutical or nutraceutical translation.


Keyword:     Bioactive brown seaweed diabetes hypoglycemic systematic review


Citation:

Firdaus M, Priambodo AF. Hypoglycemic potential of Sargassum sp.: A review of bioactive compounds for diabetes management. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.234652

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Gheda S, Hamouda RA, Naby MA, Mohamed TM, Al-Shaikh TM, Khamis A. Potent Effect of Phlorotannins derived from Sargassum linifolium as antioxidant and antidiabetic in a streptozotocin-induced diabetic rats model. Appl Sci. 2023;13(8):4711. doi: https://doi.org/10.3390/app13084711

2. Akbarzadeh S, Gholampour H, Farzadinia P, Daneshi A, Ramavandi B, Moazzeni A, et al. Anti-diabetic effects of Sargassum oligocystum on streptozotocin-induced diabetic rat. Iranian J Basic Med Sci. 2018;21(3):342–6. doi: https://doi.org/10.22038/ijbms.2018.25654.6329

3. Barky ARE, Hussein SA, Alm-eldeen AA, Hafez YA, Mohamed TM. Anti-diabetic activity of Holothuria thomasi saponin. Biomed. Pharmacother. 2016;84:1472–1487. doi: https://doi.org/10.1016/j. biopha.2016.10.002

4. Firdaus M, Astawan M, Muchtadi D, Wresdiyati T, Waspadji S, Karyono S. Prevention of endothelial dysfunction in streptozotocin-induced diabetic rats by Sargassum echinocarpum extract. Med J Ind. 2010;19(1):32–5. doi: https://doi.org/10.13181/mji.v19i1.382

5. Unnikrishnan PS, Suthindhiran K, Jayasri MA. Antidiabetic potential of marine algae by inhibiting key metabolic enzymes. Front Life Sci. 2015;8(2):148–59. doi: https://doi.org/10.1080/21553769.2015.100 5244

6. Moheimanian N, Mirkhani H, Purkhosrow A, Sohrabipour J, Jassbi AR. In Vitro and In Vivo antidiabetic, α-glucosidase inhibition and antibacterial activities of three brown algae, Polycladia myrica, Padina antillarum, and Sargassum boveanum, and a red alga, Palisada perforata from the Persian Gulf. Iranian J Pharm Res. 2023;22(1):e133731. doi: https://doi.org/10.5812/ijpr-133731

7. Xie X, Chen C, Fu X. Modulation effects of Sargassum pallidum extract on hyperglycemia and hyperlipidemia in type 2 diabetic mice. Foods. 2023;12(24):4409. doi: https://doi.org/10.3390/foods12244409

8. Godlaveti Vijay NK, Vellapandian C. Ameliorative effects of phlorotannin-rich fraction of Sargassum tenerrimum in high-fat diet and low dose streptozotocin-induced metabolic changes and oxidative stress in diabetic rats. J HerbMed Pharmacol. 2023;12(3):367–79. doi: https://doi.org/10.34172/jhp.2023.40

9. Noorjahan A, Aiyamperumal B, Anantharaman P. Characterization and biochemical properties of brown seaweed Sargassum tenerrimum. J Agardh. Int. J. Pharm. Biol. Sci. 2019;9(2):252–8. doi: https://doi.org/10.21276/ijpbs.2019.9.2.34

10. Raguraman V, L SA, J J, Palaniappan S, Gopal S, R T, et al. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebra fish model. Carbo Polym. 2019;203:441–9. doi: https://doi.org/10.1016/j.carbpol.2018.09.056

11. Krupinski EA. Writing Systematic Reviews of the Literature—It Really Is a Systematic Process!. J Digit Imag. 2019;32:199–200. doi: https://doi.org/10.1007/s10278-018-00176-x

12. Williams RI, Clark LA, Clark WR, Raffo DM. Re-examining systematic literature review in management research: additional benefits and execution protocols. Euro Manag J. 2021;39(4):521–33. doi: https://doi.org/10.1016/j.emj.2020.09.007

13. Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018;18(1):85. doi: https://doi.org/10.1186/s12874-018-0545-3

14. Linnenluecke MK, Marrone M, Singh AK. Conducting systematic literature reviews and bibliometric analyses. Austral J Manag. 2019;45:175–94. doi: https://doi.org/10.1177/0312896219877678

15. Souto RQ, Khanassov V, Hong QN, Bush PL, Vedel I, Pluye P. Systematic mixed studies reviews: updating results on the reliability and efficiency of the mixed methods appraisal tool. Int J Nursing Stud. 2015;52:500–1. doi: https://doi.org/10.1016/j.ijnurstu.2014.08.010

16. Firdaus M. Sargassum sp. as a natural hypoglycemic agent: a systematic review of its bioactive compounds in diabetes management. Open Sci Framework. 2025. doi: https://doi.org/10.17605/osf.io/2yp8v

17. Alinani K, Liu D, Zhou D, Wang G. Service composition and optimal selection in cloud manufacturing: state-of-the-art and research challenges. IEEE Access. 2020;8:223988–4005. doi: https://doi.org/10.1109/ACCESS.2020.3045008

18. Khaslavskaya A, Roso V. Dry ports: research outcomes, trends, and future implications. Maritime Eco Log. 2020;22:265–92. doi: https://doi.org/10.1057/s41278-020-00152-9

19. Tumpa RJ, Skaik S, Ham M, Chaudhry G. A holistic overview of studies to improve group-based assessments in higher education: a systematic literature review. Sustainability. 2022; 14(15):9638. doi: https://doi.org/10.3390/su14159638

20. Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, et al. Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol. 2014;26(5):1939–51. doi: https://doi.org/10.1007/s10811-014-0304-8

21. Motshakeri M, Ebrahimi M, Goh YM, Othman HH, Hair-Bejo M, Mohamed S. Effects of brown seaweed (Sargassum polycystum) extracts on kidney, liver, and pancreas of type 2 diabetic rat model. Evid-Based Compl Alternative Med. 2014;2014:379407. doi: https://doi.org/10.1155/2014/379407

22. Park MH, Nam YH, Han JS. Sargassum coreanum extract alleviates hyperglycemia and improves insulin resistance in db/db diabetic mice. Nutr Res Pract. 2015;9(5):472–9. doi: https://doi.org/10.4162/nrp.2015.9.5.472

23. Oh JH, Kim J, Lee Y. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice. Nutr Res Pract. 2016;10(1):42–8. doi: https://doi.org/10.4162/nrp.2016.10.1.42

24. Park JE, Lee JH, Han JS. Sargassum yezoense extract inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice. Prev Nutr Food Sci. 2017;22(3):166– 71. doi: https://doi.org/10.3746/pnf.2017.22.3.166

25. Firdaus M, Chamidah A. Sargassum polycystum methanol extract affects the nuclear factor-k beta and interleukin-6 expression in streptozotocin-induced diabetes rats. Asian J Pharm Clin Res. 2018;11(11):337–9. doi: https://doi.org/10.22159/ajpcr.2018. v11i11.27658

26. Gotama TL, Husni A. Antidiabetic activity of Sargassum hystrix extracts in streptozotocin-induced diabetic rats. Prev Nutr Food Sci. 2018;23(3):189–95. doi: https://doi.org/10.3746/pnf.2018.23.3.189

27. Lee JS, Han JS. Sargassum sagamianum extract alleviates postprandial hyperglycemia in diabetic mice. Prev Nutritional Food Sci. 2018;23(2):122–6. doi: https://doi.org/10.3746/pnf.2018.23.2.122

28. Renitta RE, Narayanan R, Cypriyana Pj J, Samrot AV. Antidiabetic potential of methanolic extracts of Sargassum wightii in streptozotocin induced diabetic mice. Biocatal Agric Biotechnol. 2020;28:101763, doi: https://doi.org/10.1016/j.bcab.2020.101763

29. Lindsey APJ, Issac R, Prabha ML, Renitta RE, Catherine A, Samrot AV, et al. Evaluation of antidiabetic activity of Sargassum tenerrimum in streptozotocin-induced diabetic mice. J Pure Appl Microbiol. 2021;15(4):2462–72. doi: https://doi.org/10.22207/JPAM.15.4.73

30. Murakami S, Hirazawa C, Ohya T, Yoshikawa R, Mizutani T, Ma N, et al. The edible brown seaweed Sargassum horneri (Turner) C. agardh ameliorates high-fat diet-induced obesity, diabetes, and hepatic steatosis in mice. Nutrients. 2021;13(2):1–4. doi: https://doi.org/10.3390/nu13020551

31. Wu S, Zuo J, Cheng Y, Zhang Y, Zhang Z, Wu M, et al. Ethanol extract of Sargarsum fusiforme alleviates HFD/STZ-induced hyperglycemia in association with modulation of gut microbiota and intestinal metabolites in type 2 diabetic mice. Food Res Int. 2021;147:110550. doi: https://doi.org/10.1016/j.foodres.2021.110550

32. Muhamad F, Rahmi N, Bachtiar R, Windy Hapsari H, Aqilatul B, Nur Khasanah S. The glucose uptake of type 2 diabetic rats by Sargassum olygocystum extract: in silico and in vivo studies. J Appl Pharm Sci. 2022;12(3):132–9. doi: https://doi.org/10.7324/JAPS.2022.120314

33. Lee YH, Kim HR, Yeo MH, Kim SC, Hyun HB, Ham YM, et al. Anti-diabetic potential of Sargassum horneri and Ulva australis extracts in vitro and in vivo. Curr Issues Mol Biol. 2023;45(9):7492–512. doi: https://doi.org/10.3390/cimb45090473

Article Metrics
8 Views 0 Downloads 8 Total

Year

Month

Related Search

By author names