Pharmacogenomics (PGx) is the study of how genetic differences affect how people react to medications. It is an important aspect of improving personalized treatment. Russo claimed that PGx can make treatments more effective and reduce adverse drug reactions (ADRs) by matching them to your genetic profile. This is a major step up from the old “one-size-fits-all” way of doing things. This review talks about how PGx helps make pharmaceuticals that are better for the environment. It talks about how PGx can help with dosing, figuring out how medications will act, and preventing ADRs. All of these things contribute to better and cheaper healthcare. PGx has a lot of potential, but there are a number of drawbacks that make it impossible for many individuals to use it. Some of these are that genomic databases do not have enough variety, gene–drug interaction models are too simplistic, and it is hard to get people to accept them in clinical settings since there is not enough infrastructure or training. Ethical and regulatory difficulties, notably those about protecting data and getting access to genetic testing, make it even tougher to put into action. It is also hard to use PGx in regions with low resources because it costs so much. This review reveals how PGx could help save healthcare expenditures, reduce ADRs, and make it less likely that clinical trials would fail. It also talks about crucial strategies to get over current problems, such as making genetic studies more varied, enhancing clinical integration, and dealing with financial challenges. By looking at PGx from several angles, this study hopes to improve research, change policy, and promote a broader and fairer use of PGx in clinical practice.
Lakshmi K, Nagarajan B, Dabburu K, Roy C, Shanthi B, Das G, Chakraborty T, Syed S, Albert J, Prabha KS. Pharmacogenomics for sustainable drug development: A narrative review of precision medicine, green chemistry, and multi-omics innovation. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.260740
1. Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, et al. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin. 2024;40(11):1943–61. doi: https://doi.org/10.10 80/03007995.2024.2416985
2. Ta R, Cayabyab MA, Coloso R. Precision medicine: a call for increased pharmacogenomic education. Pers Med. 2019;16(3):233– 45. doi: https://doi.org/10.2217/pme-2018-0107
3. Sánchez-Bayona R, Catalán C, Cobos MA, Bergamino M. Pharmacogenomics in solid tumors: a comprehensive review of genetic variability and its clinical implications. Cancers. 2025;17(6):913. doi: https://doi.org/10.3390/cancers17060913
4. Tagwerker C, Carias-Marines MJ, Smith DJ.Effects of pharmacogenomic testing in clinical pain management: retrospective study. JMIRx Med. 2022;3(2):e32902. doi: https://doi.org/10.2196/32902
5. Jin Y, Wang J, Bachtiar M, Chong SS, Lee CG. Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genom. 2018;12:1–3. doi: https://doi.org/10.1186/s40246-018-0175-1
6. Antony Raj CB, Nagarajan H, Aslam MH, Panchalingam S. SNP identification and discovery. In: Gupta MK, Behera L, editors. Bioinformatics in rice research: theories and techniques. Singapore: Springer Nature; 2021. pp. 361–86. doi: https://doi.org/10.1007/978-981-16-3993-7_17
7. Micaglio E, Locati ET, Monasky MM, Romani F, Heilbron F, Pappone C. Role of pharmacogenetics in adverse drug reactions: an update towards personalized medicine. Front Pharmacol. 2021;12:651720. doi: https://doi.org/10.3389/fphar.2021.651720
8. Bourawy A, Abdalla A. Germline short variant discovery and annotation pipeline using GATK tool. AlQalam J Med Appl Sci. 2023;7:424–32. doi: https://doi.org/10.5281/zenodo.8219249
9. Arbitrio M, Scionti F, Di Martino MT, Caracciolo D, Pensabene L, Tassone P, et al. Pharmacogenomics biomarker discovery and validation for translation in clinical practice. Clin Transl Sci. 2021;14(1):113–9. doi: https://doi.org/10.1111/cts.12869
10. Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021;22(23):12808. doi: https://doi.org/10.3390/ijms222312808
11. Cojocaru A, Braha A, Jeleriu R, Andreescu NI, Puiu M, Ageu L, et al. The implications of cytochrome P450 2D6/CYP2D6 polymorphism in the therapeutic response of atypical antipsychotics in adolescents with psychosis-A prospective study. Biomedicines. 2024;12(3):494. doi: https://doi.org/10.3390/biomedicines12030494
12. Aus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A, et al. Pharmaceuticals in the environment—global occurrences and perspectives. Environ Toxicol Chem. 2016;35(4):823–35. doi: https://doi.org/10.1002/etc.3339
13. Kane M. CYP2D6 overview: allele and phenotype frequencies. In: Pratt VM, Scott SA, Pirmohamed M, squivel B, Kattman BL, editors. Medical genetics summaries [Internet]. USA: National Center for Biotechnology Information (NCBI); 2021.
14. Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L, et al. Advancing precision medicine: a review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics. 2024;16(3):332. doi: https://doi.org/10.3390/pharmaceutics16030332
15. Topic E. Pharmacogenetic and tumour drugs. EJIFCC. 2005;16(2):61.
16. Rai S. Pharmacogenomics: personalized medicine for cancer treatment and drug response variability of cardiovascular drugs. Pharmacogenomics. 2024;1(5):85–91.
17. Liu Y, Lin Z, Chen Q, Chen Q, Sang L, Wang Y, et al. PAnno: a pharmacogenomics annotation tool for clinical genomic testing. Front Pharmacol. 2023;14:1008330. doi: https://doi.org/10.3389/fphar.2023.1008330
18. Hippman C, Nislow C. Pharmacogenomic testing: clinical evidence and implementation challenges. J Pers Med. 2019;9(3):40. doi: https://doi.org/10.3390/jpm9030040
19. Tata EB, Ambele MA, Pepper MS. Barriers to implementing clinical pharmacogenetics testing in Sub-Saharan Africa. A critical review. Pharmaceutics. 2020;12(9):809. doi: https://doi.org/10.3390/pharmaceutics12090809
20. Mulder N, Abimiku AL, Adebamowo SN, de Vries J, Matimba A, Olowoyo P, et al. H3Africa: current perspectives. Pharmacogenomics Pers Med. 2018;11:59–66. doi: https://doi.org/10.1073/pnas.1812296116
21. Reboud J, Xu G, Garrett A, Adriko M, Yang Z, Tukahebwa EM, Rowell C, Cooper JM. Based microfluidics for DNA diagnostics of malaria in low-resource underserved rural communities. Proc Natl Acad Sci U S A. 2019;116(11):4834–42. doi: https://doi.org/10.2147/PGPM.S141546
22. Cao C, Wang J, Kwok D, Cui F, Zhang Z, Zhao D, et al. webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res. 2022;50(D1):D1123–30. doi: https://doi.org/10.1093/nar/gkab957
23. Schmidt AF, Hingorani AD, Finan C. Human genomics and drug development. Cold Spring Harb Perspect Med. 2022;12(2):a039230. doi: https://doi.org/10.1101/cshperspect.a039230
24. Abdi G, Jain M, Barwant M, Tendulkar R, Tendulkar M, Tariq M, et al. Unveiling the dynamic role of bioinformatics in automation for efficient and accurate data processing and interpretation. In: Singh V, Kumar A, editors. Advances in bioinformatics. Singapore: Springer Nature Singapore; 2024. pp. 279–319. doi: https://doi.org/10.1007/978-981-99-8401-5_15
25. Cappuzzo F. Guide to targeted therapies: EGFR mutations in NSCLC. Cham, Switzerland: Springer International Publisher; 2014. doi: https://doi.org/10.1007/978-3-319-03059-3_4
26. Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC, et al. DGIdb: mining the druggable genome. Nat Methods. 2013;10(12):1209–10. doi: https://doi.org/10.1038/nmeth.2689
27. Smith DM, Stevenson JM, Ho TT, Formea CM, Gammal RS, Cavallari LH. Pharmacogenetics: a precision medicine approach to combatting the opioid epidemic. J Am Coll Clin Pharm. 2022;5(2):239–50. doi: https://doi.org/10.1002/jac5.1582
28. Helwig K, Niemi L, Stenuick JY, Alejandre JC, Pfleger S, Roberts J, et al. Broadening the perspective on reducing pharmaceutical residues in the environment. Environ Toxicol Chem. 2024;43(3):653–63. doi: https://doi.org/10.1002/etc.5563
29. Constable DJ, Curzons AD, Cunningham VL. Metrics to ‘green’chemistry—which are the best? Green Chem. 2002;4(6):521– 7. doi: https://doi.org/10.1039/B206169B
30. Abul-Husn NS, Soper ER, Braganza GT, Rodriguez JE, Zeid N, Cullina S, et al. Implementing genomic screening in diverse populations. Genome Med. 2021;13(1):17. doi: https://doi.org/10.1186/s13073-021-00832-y
31. Patel R, Patel A. Revolutionizing drug development: AI-driven predictive modeling for accelerated small molecule and biologic therapeutics. Well Testing J.2024;33(S2):668–91.
32. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J.Green chemistry in the synthesis of pharmaceuticals. Chem Rev. 2021;122(3):3637– 710. doi: https://doi.org/10.1021/acs.chemrev.1c00631
33. Oni-Orisan A, Srinivas N, Mehta K, Das JL, Nguyen TT, Tison GH, et al. Leveraging innovative technology to generate drug response phenotypes for the advancement of biomarker-driven precision dosing. Clin Transl Sci. 2021;14(3):784–90. doi: https://doi.org/10.1111/cts.12973
34. Liao S, Wang L, Wei X. Pharmacogenetics and pharmacogenomics in glaucoma therapeutics: the way to personalized therapy. Chin Med J.2023;136(21):2573–5. doi: https://doi.org/10.1097/CM9.0000000000002419
35. Henricks LM, Lunenburg CA, de Man FM, Meulendijks D, Frederix GW, Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19(11):1459–67. doi: https://doi.org/10.1016/S1470-2045(18)30686-7
36. Böhm R, Proksch E, Schwarz T, Cascorbi I. Drug hypersensitivity: diagnosis, genetics, and prevention. Deutsch Ärztebl Int. 2018;115(29-30):501. doi: https://doi.org/10.3238/arztebl.2018.0501
37. Nafiz Hendi N, Mahdi A, AlYafie R. Advanced hepatitis management: precision medicine integration [Internet]. In: Hendi NN, Mahdi A, AlYafie R, editors. Hepatitis -recent advances [Working Title]. UK: IntechOpen; 2025. doi: http://dx.doi.org/10.5772/intechopen.1007793
38. David S. A current guide to candidate gene association studies. Trends Genet. 2021;37(12):1056–9. doi: https://doi.org/10.1016/j.tig.2021.07.009
39. Xiao Q, Bai X, Zhang C, He Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: a review. J Adv Res. 2022;35:215–30. doi: https://doi.org/10.1016/j.jare.2021.05.002
40. Uffelmann E, Huang QQ, Munung NS, De Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Prim. 2021;1(1):59. doi: https://doi.org/10.1038/s43586-021-00056-9
41. Ungricht R, Guibbal L, Lasbennes MC, Orsini V, Beibel M, Waldt A, et al. Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis. Cell Stem Cell. 2022;29(1):160–75. doi: https://doi.org/10.1016/j.stem.2021.11.001
42. Zhao C, Zhang Z, Sun L, Bai R, Wang L, Chen S. Genome sequencing provides potential strategies for drug discovery and synthesis. Acupunct Herb Med. 2023;3(4):244–55. doi: https://doi.org/10.1097/HM9.0000000000000076
43. Li K, Ouyang M, Zhan J, Tian R. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. Cell Genom. 2023;3(5):100300. doi: https://doi.org/10.1016/j.xgen.2023.100300
44. Modell AE, Lim D, Nguyen TM, Sreekanth V, Choudhary A. CRISPR-based therapeutics: current challenges and future applications. Trends Pharmacol Sci. 2022;43(2):151–61. doi: https://doi.org/10.1016/j.tips.2021.10.012
45. Fitzpatrick AH, Rupnik A, O’Shea H, Crispie F, Keaveney S, Cotter P. High throughput sequencing for the detection and characterization of RNA viruses. Front Microbiol. 2021; 12:621719. doi: https://doi.org/10.3389/fmicb.2021.621719
46. Jaruthamsophon K, Thomson PJ, Sukasem C, Naisbitt DJ, Pirmohamed M. HLA Allele-restricted immune-mediated adverse drug reactions: framework for genetic prediction. Annu Rev Pharmacol Toxicol. 2022;62(1):509–29. doi: https://doi.org/10.1146/annurev-pharmtox-052120-014115
47. Tham KM, Yek JJ, Liu CW. Unraveling the genetic link: an umbrella review on HLA-B*15:02 and antiepileptic drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenet Genom. 2024;34(5):154–65. doi: https://doi.org/10.1097/FPC.0000000000000531
48. Stewart S, Dodero-Anillo JM, Guijarro-Eguinoa J, Arias P, Gómez López De Las Huertas A, Seco-Meseguer E, et al. Advancing pharmacogenetic testing in a tertiary hospital: a retrospective analysis after 10 years of activity. Front Pharmacol. 2023;14:1292416. doi: https://doi.org/10.3389/fphar.2023.1292416
49. Hall BT, Eken E, Cavallari LH, Duarte JD, Wiisanen KW, Cicali EJ, et al. Implementing pharmacogenomics clinical decision support: a comprehensive tutorial on how to integrate the epic genomics module. Clin Pharmacol Ther. 2025;117:17. doi: https://doi.org/10.1002/cpt.3599
50. van der Wouden CH, Cambon-Thomsen A, Cecchin E, Cheung KC, Dávila-Fajardo CL, Deneer VH, et al. Implementing pharmacogenomics in Europe: design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin Pharmacol Ther. 2017;101(3):341–58. doi: https://doi.org/10.1002/cpt.602
51. Owusu Obeng A, Fei K, Levy KD, Elsey AR, Pollin TI, Ramirez AH, et al. Physician-reported benefits and barriers to clinical implementation of genomic medicine: a multi-site IGNITE-network survey. J Pers Med. 2018;8(3):24. doi: https://doi.org/10.3390/jpm8030024
52. Jeiziner C, Wernli U, Suter K, Hersberger KE, Meyer Zu Schwabedissen HE. HLA-associated adverse drug reactions-scoping review. Clin Transl Sci. 2021;14(5):1648–58. doi: https://doi.org/10.1111/cts.13062
53. Elbahnsi A, Dudas B, Callebaut I, Hinzpeter A, Miteva MA. ATP-binding cassette and solute carrier transporters: understanding their mechanisms and drug modulation through structural and modeling approaches. Pharmaceuticals. 2024;17(12):1602. doi: https://doi.org/10.3390/ph17121602
54. Giacomini KM, Yee SW, Koleske ML, Zou L, Matsson P, Chen EC, et al. New and emerging research on solute carrier and ATP binding cassette transporters in drug discovery and development: outlook from the international transporter consortium. Clin Pharmacol Ther. 2022;112(3):540–61. doi: https://doi.org/10.1002/cpt.2627
55. Turongkaravee S, Jittikoon J, Lukkunaprasit T, Sangroongruangsri S, Chaikledkaew U, Thakkinstian A. A systematic review and meta-analysis of genotype-based and individualized data analysis of SLCO1B1 gene and statin-induced myopathy. Pharmacogenomics J.2021;21(3):296–307. doi: https://doi.org/10.1038/s41397-021-00208-w
56. Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol. 2019;12(5):407–42. doi: https://doi.org/10.1080/17512433.2019.15 97706
57. Bironzo P, Reale ML, Sperone T, Tabbò F, Caglio A, Listì A, et al. Clinical and molecular features of epidermal growth factor receptor (EGFR) mutation positive non-small-cell lung cancer (NSCLC) patients treated with tyrosine kinase inhibitors (TKIs): predictive and prognostic role of co-mutations. Cancers. 2021;13(10):2425. doi: https://doi.org/10.3390/cancers13102425
58. Lauschke VM, Ingelman-Sundberg M. Emerging strategies to bridge the gap between pharmacogenomic research and its clinical implementation. NPJ Genom Med. 2020;5(1):9. doi: https://doi.org/10.1038/s41525-020-0119-2
59. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JH, Swen JJ, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210–6. doi: https://doi.org/10.1002/cpt.911
60. Cavallari LH, Hicks JK, Patel JN, Elchynski AL, Smith DM, Bargal SA, et al. The Pharmacogenomics global research network implementation working group: global collaboration to advance pharmacogenetic implementation. Pharmacogenet Genom. 2025;35(1):1. doi: https://doi.org/10.1097/FPC.0000000000000547
61. Thon N, Kreth S, Kreth FW. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Therapy. 2013;6:1363–72. doi: https://doi.org/10.2147/OTT.S50208
62. Zhao G, Wang Q, Li S, Wang X. Resistance to hypomethylating agents in myelodysplastic syndrome and acute myeloid leukemia from clinical data and molecular mechanism. Front Oncol. 2021;11:706030. doi: https://doi.org/10.3389/fonc.2021.706030
63. Suraweera A, O’Byrne KJ, Richard DJ.Epigenetic drugs in cancer therapy. Cancer Metastasis Rev. 2025;44(1):37. doi: https://doi.org/10.1007/s10555-025-10253-7
64. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–50. doi: https://doi.org/10.1038/nature15817
65. Chan HT, Chin YM, Low SK. The roles of common variation and somatic mutation in cancer pharmacogenomics. Oncol Ther. 2019;7(1):1–32. doi: https://doi.org/10.1007/s40487-018-0090-6
66. Kundu S, Srivastava S, Singh S. Somatic mutation: pharmacogenomics in oncology care. In: Sobti RC, Krishan A, Sobti A, editors. Biomarkers in cancer detection and monitoring of therapeuticsUSA: Academic Press (Elsevier); 2024. pp. 329–56. doi: https://doi.org/10.1016/B978-0-323-95116-6.00004-9
67. Saad R, Rizkallah MR, Aziz RK. Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut associated microbes. Gut Pathogens. 2012;4:16. doi: https://doi.org/10.1186/1757-4749-4-16
68. Sellmyer MA, Lee IK, Mankoff DA. Building the bridge: molecular imaging biomarkers for 21st century cancer therapies. J Nucl Med. 2021;62(12):1672–6. doi: https://doi.org/10.2967/jnumed.121.262484
69. Patrick PS, Kolluri KK, Zaw Thin M, Edwards A, Sage EK, Sanderson T, et al. Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Res Ther. 2020;11(1):1–2. doi: https://doi.org/10.1186/s13287-020-01770-z
70. Bustin SA, Jellinger KA. Advances in molecular medicine: unravelling disease complexity and pioneering precision healthcare. Int J Mol Sci. 2023;24(18):14168. doi: https://doi.org/10.3390/ijms241814168
71. Butnariu LI, Gorduza EV, Florea L, ?arc? E, Mois? ?M, Tradafir LM, et al. The genetic architecture of the etiology of lower extremity peripheral artery disease: current knowledge and future challenges in the era of genomic medicine. Int J Mol Sci. 2022;23(18):10481. doi: https://doi.org/10.3390/ijms231810481
72. Wyss R, Glynn RJ, Gagne JJ.A review of disease risk scores and their application in pharmacoepidemiology. Curr Epidemiol Rep. 2016;3:277–84. doi: https://doi.org/10.1007/s40471-016-0088-2
73. Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther. 2018;18(12):1257– 70. doi: https://doi.org/10.1080/14712598.2018.1545836
74. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331–44. doi: https://doi.org/10.1038/nrg.2016.160
75. Xie HG, Jia YM, Tai T, Ji JZ. Overcoming clopidogrel resistance: three promising novel antiplatelet drugs developed in China. J Cardiovasc Pharmacol 2017;70(6):356–61. doi: https://doi.org/10.1097/FJC.0000000000000529
76. Wang W, Shao C, Xu B, Wang J, Yang M, Chen J, et al. CYP2C19 genotype has prognostic value in specific populations following coronary stenting. Ann Transl Med. 2021;9(13):1066. doi: https://doi.org/10.21037/atm-20-7724
77. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Cs?szi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. doi: https://doi.org/10.1056/NEJMoa1606774
78. Caraballo PJ, Sutton JA, Giri J, Wright JA, Nicholson WT, Kullo IJ, et al. Integrating pharmacogenomics into the electronic health record by implementing genomic indicators. J Am Med Inform Assoc. 2020;27(1):154–8. doi: https://doi.org/10.1093/jamia/ocz177
79. Chang BL, Liu JR, Chang SH, See LC. Impact on carbamazepine usage and cutaneous adverse reactions before and after the reimbursement of HLA-B*1502 genotyping in Taiwan: 2000–2017. Epilepsia. 2023;64(10):2679–89. doi: https://doi.org/10.1111/epi.17726
80. Nguyen KA, Li L, Lu D, Yazdanparast A, Wang L, Kreutz RP, et al. A comprehensive review and meta-analysis of risk factors for statin-induced myopathy. Eur J Clin Pharmacol. 2018;74:1099–110. doi: https://doi.org/10.1007/s00228-018-2482-9
81. Klocker EV, Suppan C. Biomarkers in Her2-positive disease. Breast Care. 2020;15(6):586–93. doi: https://doi.org/10.1159/000512283
82. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447. doi: https://doi.org/10.1016/j.pharmthera.2019.107447
83. Chan CW, Law BM, So WK, Chow KM, Waye MM. Pharmacogenomics of breast cancer: highlighting CYP2D6 and tamoxifen. J Cancer Res Clin Oncol. 2020;146(6):1395–404. doi: https://doi.org/10.1007/s00432-020-03206-w
84. Wu J, Lin Z. Non-small cell lung cancer targeted therapy: drugs and mechanisms of drug resistance. Int J Mol Sci. 2022;23(23):15056. doi: https://doi.org/10.3390/ijms232315056
85. Russell LE, Schwarz UI. Variant discovery using next-generation sequencing and its future role in pharmacogenetics. Pharmacogenomics. 2020;21(7):471–86. doi: https://doi.org/10.2217/pgs-2019-0190
86. Mall MA, Mayer-Hamblett N, Rowe SM. Cystic fibrosis: emergence of highly effective targeted therapeutics and potential clinical implications. Am J Respir Crit Care Med. 2020;201(10):1193–208. doi: https://doi.org/10.1164/rccm.201910-1943SO
87. Adam G, Rampášek L, Safikhani Z, Smirnov P, Haibe-Kains B, Goldenberg A. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis Oncol. 2020;4(1):19. doi: https://doi.org/10.1038/s41698-020-0122-1
88. Chawla R, Rani V, Mishra M. Integrated role of nanotechnology and pharmacogenetics in diagnosis and treatment. Pharmacogenetics. 2021;24:11. doi: https://doi.org/10.5772/intechopen.97643
89. Zhou Y, Lauschke VM. Challenges related to the use of next-generation sequencing for the optimization of drug therapy. In: Cascorbi I, Schwab M, editors. Precision medicine. Cham, Switzerland: Springer International Publishing; 2022. pp. 237–260. doi: https://doi.org/10.1007/164_2022_596
90. Elgarhy FM, Borham A, Alziny N, AbdElaal KR, Shuaib M, Musaibah AS, et al. From drug discovery to drug approval: a comprehensive review of the pharmacogenomics status quo with a special focus on Egypt. Pharmaceuticals. 2024;17(7):881. doi: https://doi.org/10.3390/ph17070881
91. Manickam K, McClain MR, Demmer LA, Biswas S, Kearney HM, Malinowski J, et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(11):2029– 37. doi: https://doi.org/10.1038/s41436-021-01242-6
92. Liu Z, Roberts R, Mercer TR, Xu J, Sedlazeck FJ, Tong W. Towards accurate and reliable resolution of structural variants for clinical diagnosis. Genome Biol. 2022;23(1):68. doi: https://doi.org/10.1186/s13059-022-02636-8
93. Corpas M, Pius M, Poburennaya M, Guio H, Dwek M, Nagaraj S, et al. Bridging genomics’ greatest challenge: the diversity gap. Cell Genomics. 2025;5(1):100724. doi: https://doi.org/10.1016/j.xgen.2024.100724
94. Gupta S, Kapoor M, Debnath SK. Artificial Intelligence-enabled security for healthcare systems: safeguarding patient data and improving services. Switzerland: Springer Nature; 2025. doi: https://doi.org/10.1007/978-3-031-82810-2_1
95. Corrales Compagnucci M, Fenwick M. A multidisciplinary perspective on cross-border health data transfers: privacy, risks and solutions. In: Compagnucci Mc, Fenwick M, editors. International transfers of health data: a global perspective. Singapore: Springer Nature Singapore; 2025. pp. 1–15. doi: https://doi.org/10.1007/978-981-97-9983-1_1
96. Kalkman S, Mostert M, Gerlinger C, van Delden JJ, van Thiel GJ.Responsible data sharing in international health research: a systematic review of principles and norms. BMC Med Ethics. 2019;20(1):21. doi: https://doi.org/10.1186/s12910-019-0359-9
97. Munung NS. Science and society: pathways to equitable access and delivery of genomics medicine in Africa. Curr Genet Med Rep. 2025;13(1):1. doi: https://doi.org/10.1007/s40142-024-00211-0
98. Shriver SP, Adams D, McKelvey BA, McCune JS, Miles D, Pratt VM, et al. Overcoming barriers to discovery and implementation of equitable pharmacogenomic testing in oncology. J Clin Oncol. 2024;42(10):1181–92. doi: https://doi.org/10.1200/JCO.23.01748
99. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177(1):26–31. doi: https://doi.org/10.1016/j.cell.2019.02.048
100. Gyngell C, Douglas T, Savulescu J.The ethics of germline gene editing. J Appl Philos. 2017;34(4):498–513. doi: https://doi.org/10.1111/japp.12249
101. Leslie D. Understanding artificial intelligence ethics and safety: a guide for the responsible design and implementation of AI systems in the public sector. USA: Alan Turing Institute; 2019. doi: https://doi.org/10.2139/ssrn.3403301
102. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16(6):321–32. doi: https://doi.org/10.1038/nrg3920
103. Baudhuin LM, Ferber MJ.Miniaturized nanopore DNA sequencing: accelerating the path to precision medicine. Clin Chem. 2017;63(3):632–4. doi: https://doi.org/10.1373/clinchem.2016.261420
104. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490– 507. doi: https://doi.org/10.1038/s41580-019-0131-5
Year
Month