Pharmacogenomics for sustainable drug development: A narrative review of precision medicine, green chemistry, and multi-omics innovation

Kanagaraj Lakshmi Balaji Nagarajan Kumaraswamy Dabburu Chittran Roy Balasubramanian Shanthi Gunamoni Das Tamalika Chakraborty Shamina Syed Joshua Albert Kannaiyan Suria Prabha   

Open Access   

Published:  Sep 30, 2025

DOI: 10.7324/JAPS.2025.260740
Abstract

Pharmacogenomics (PGx) is the study of how genetic differences affect how people react to medications. It is an important aspect of improving personalized treatment. Russo claimed that PGx can make treatments more effective and reduce adverse drug reactions (ADRs) by matching them to your genetic profile. This is a major step up from the old “one-size-fits-all” way of doing things. This review talks about how PGx helps make pharmaceuticals that are better for the environment. It talks about how PGx can help with dosing, figuring out how medications will act, and preventing ADRs. All of these things contribute to better and cheaper healthcare. PGx has a lot of potential, but there are a number of drawbacks that make it impossible for many individuals to use it. Some of these are that genomic databases do not have enough variety, gene–drug interaction models are too simplistic, and it is hard to get people to accept them in clinical settings since there is not enough infrastructure or training. Ethical and regulatory difficulties, notably those about protecting data and getting access to genetic testing, make it even tougher to put into action. It is also hard to use PGx in regions with low resources because it costs so much. This review reveals how PGx could help save healthcare expenditures, reduce ADRs, and make it less likely that clinical trials would fail. It also talks about crucial strategies to get over current problems, such as making genetic studies more varied, enhancing clinical integration, and dealing with financial challenges. By looking at PGx from several angles, this study hopes to improve research, change policy, and promote a broader and fairer use of PGx in clinical practice.


Keyword:     Personalized therapeutics pharmacogenomics precision medicine SNPs and sustainable drug development


Citation:

Lakshmi K, Nagarajan B, Dabburu K, Roy C, Shanthi B, Das G, Chakraborty T, Syed S, Albert J, Prabha KS. Pharmacogenomics for sustainable drug development: A narrative review of precision medicine, green chemistry, and multi-omics innovation. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.260740

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, et al. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin. 2024;40(11):1943–61. doi: https://doi.org/10.10 80/03007995.2024.2416985

2. Ta R, Cayabyab MA, Coloso R. Precision medicine: a call for increased pharmacogenomic education. Pers Med. 2019;16(3):233– 45. doi: https://doi.org/10.2217/pme-2018-0107

3. Sánchez-Bayona R, Catalán C, Cobos MA, Bergamino M. Pharmacogenomics in solid tumors: a comprehensive review of genetic variability and its clinical implications. Cancers. 2025;17(6):913. doi: https://doi.org/10.3390/cancers17060913

4. Tagwerker C, Carias-Marines MJ, Smith DJ.Effects of pharmacogenomic testing in clinical pain management: retrospective study. JMIRx Med. 2022;3(2):e32902. doi: https://doi.org/10.2196/32902

5. Jin Y, Wang J, Bachtiar M, Chong SS, Lee CG. Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genom. 2018;12:1–3. doi: https://doi.org/10.1186/s40246-018-0175-1

6. Antony Raj CB, Nagarajan H, Aslam MH, Panchalingam S. SNP identification and discovery. In: Gupta MK, Behera L, editors. Bioinformatics in rice research: theories and techniques. Singapore: Springer Nature; 2021. pp. 361–86. doi: https://doi.org/10.1007/978-981-16-3993-7_17

7. Micaglio E, Locati ET, Monasky MM, Romani F, Heilbron F, Pappone C. Role of pharmacogenetics in adverse drug reactions: an update towards personalized medicine. Front Pharmacol. 2021;12:651720. doi: https://doi.org/10.3389/fphar.2021.651720

8. Bourawy A, Abdalla A. Germline short variant discovery and annotation pipeline using GATK tool. AlQalam J Med Appl Sci. 2023;7:424–32. doi: https://doi.org/10.5281/zenodo.8219249

9. Arbitrio M, Scionti F, Di Martino MT, Caracciolo D, Pensabene L, Tassone P, et al. Pharmacogenomics biomarker discovery and validation for translation in clinical practice. Clin Transl Sci. 2021;14(1):113–9. doi: https://doi.org/10.1111/cts.12869

10. Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021;22(23):12808. doi: https://doi.org/10.3390/ijms222312808

11. Cojocaru A, Braha A, Jeleriu R, Andreescu NI, Puiu M, Ageu L, et al. The implications of cytochrome P450 2D6/CYP2D6 polymorphism in the therapeutic response of atypical antipsychotics in adolescents with psychosis-A prospective study. Biomedicines. 2024;12(3):494. doi: https://doi.org/10.3390/biomedicines12030494

12. Aus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A, et al. Pharmaceuticals in the environment—global occurrences and perspectives. Environ Toxicol Chem. 2016;35(4):823–35. doi: https://doi.org/10.1002/etc.3339

13. Kane M. CYP2D6 overview: allele and phenotype frequencies. In: Pratt VM, Scott SA, Pirmohamed M, squivel B, Kattman BL, editors. Medical genetics summaries [Internet]. USA: National Center for Biotechnology Information (NCBI); 2021.

14. Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L, et al. Advancing precision medicine: a review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics. 2024;16(3):332. doi: https://doi.org/10.3390/pharmaceutics16030332

15. Topic E. Pharmacogenetic and tumour drugs. EJIFCC. 2005;16(2):61.

16. Rai S. Pharmacogenomics: personalized medicine for cancer treatment and drug response variability of cardiovascular drugs. Pharmacogenomics. 2024;1(5):85–91.

17. Liu Y, Lin Z, Chen Q, Chen Q, Sang L, Wang Y, et al. PAnno: a pharmacogenomics annotation tool for clinical genomic testing. Front Pharmacol. 2023;14:1008330. doi: https://doi.org/10.3389/fphar.2023.1008330

18. Hippman C, Nislow C. Pharmacogenomic testing: clinical evidence and implementation challenges. J Pers Med. 2019;9(3):40. doi: https://doi.org/10.3390/jpm9030040

19. Tata EB, Ambele MA, Pepper MS. Barriers to implementing clinical pharmacogenetics testing in Sub-Saharan Africa. A critical review. Pharmaceutics. 2020;12(9):809. doi: https://doi.org/10.3390/pharmaceutics12090809

20. Mulder N, Abimiku AL, Adebamowo SN, de Vries J, Matimba A, Olowoyo P, et al. H3Africa: current perspectives. Pharmacogenomics Pers Med. 2018;11:59–66. doi: https://doi.org/10.1073/pnas.1812296116

21. Reboud J, Xu G, Garrett A, Adriko M, Yang Z, Tukahebwa EM, Rowell C, Cooper JM. Based microfluidics for DNA diagnostics of malaria in low-resource underserved rural communities. Proc Natl Acad Sci U S A. 2019;116(11):4834–42. doi: https://doi.org/10.2147/PGPM.S141546

22. Cao C, Wang J, Kwok D, Cui F, Zhang Z, Zhao D, et al. webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res. 2022;50(D1):D1123–30. doi: https://doi.org/10.1093/nar/gkab957

23. Schmidt AF, Hingorani AD, Finan C. Human genomics and drug development. Cold Spring Harb Perspect Med. 2022;12(2):a039230. doi: https://doi.org/10.1101/cshperspect.a039230

24. Abdi G, Jain M, Barwant M, Tendulkar R, Tendulkar M, Tariq M, et al. Unveiling the dynamic role of bioinformatics in automation for efficient and accurate data processing and interpretation. In: Singh V, Kumar A, editors. Advances in bioinformatics. Singapore: Springer Nature Singapore; 2024. pp. 279–319. doi: https://doi.org/10.1007/978-981-99-8401-5_15

25. Cappuzzo F. Guide to targeted therapies: EGFR mutations in NSCLC. Cham, Switzerland: Springer International Publisher; 2014. doi: https://doi.org/10.1007/978-3-319-03059-3_4

26. Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC, et al. DGIdb: mining the druggable genome. Nat Methods. 2013;10(12):1209–10. doi: https://doi.org/10.1038/nmeth.2689

27. Smith DM, Stevenson JM, Ho TT, Formea CM, Gammal RS, Cavallari LH. Pharmacogenetics: a precision medicine approach to combatting the opioid epidemic. J Am Coll Clin Pharm. 2022;5(2):239–50. doi: https://doi.org/10.1002/jac5.1582

28. Helwig K, Niemi L, Stenuick JY, Alejandre JC, Pfleger S, Roberts J, et al. Broadening the perspective on reducing pharmaceutical residues in the environment. Environ Toxicol Chem. 2024;43(3):653–63. doi: https://doi.org/10.1002/etc.5563

29. Constable DJ, Curzons AD, Cunningham VL. Metrics to ‘green’chemistry—which are the best? Green Chem. 2002;4(6):521– 7. doi: https://doi.org/10.1039/B206169B

30. Abul-Husn NS, Soper ER, Braganza GT, Rodriguez JE, Zeid N, Cullina S, et al. Implementing genomic screening in diverse populations. Genome Med. 2021;13(1):17. doi: https://doi.org/10.1186/s13073-021-00832-y

31. Patel R, Patel A. Revolutionizing drug development: AI-driven predictive modeling for accelerated small molecule and biologic therapeutics. Well Testing J.2024;33(S2):668–91.

32. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J.Green chemistry in the synthesis of pharmaceuticals. Chem Rev. 2021;122(3):3637– 710. doi: https://doi.org/10.1021/acs.chemrev.1c00631

33. Oni-Orisan A, Srinivas N, Mehta K, Das JL, Nguyen TT, Tison GH, et al. Leveraging innovative technology to generate drug response phenotypes for the advancement of biomarker-driven precision dosing. Clin Transl Sci. 2021;14(3):784–90. doi: https://doi.org/10.1111/cts.12973

34. Liao S, Wang L, Wei X. Pharmacogenetics and pharmacogenomics in glaucoma therapeutics: the way to personalized therapy. Chin Med J.2023;136(21):2573–5. doi: https://doi.org/10.1097/CM9.0000000000002419

35. Henricks LM, Lunenburg CA, de Man FM, Meulendijks D, Frederix GW, Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19(11):1459–67. doi: https://doi.org/10.1016/S1470-2045(18)30686-7

36. Böhm R, Proksch E, Schwarz T, Cascorbi I. Drug hypersensitivity: diagnosis, genetics, and prevention. Deutsch Ärztebl Int. 2018;115(29-30):501. doi: https://doi.org/10.3238/arztebl.2018.0501

37. Nafiz Hendi N, Mahdi A, AlYafie R. Advanced hepatitis management: precision medicine integration [Internet]. In: Hendi NN, Mahdi A, AlYafie R, editors. Hepatitis -recent advances [Working Title]. UK: IntechOpen; 2025. doi: http://dx.doi.org/10.5772/intechopen.1007793

38. David S. A current guide to candidate gene association studies. Trends Genet. 2021;37(12):1056–9. doi: https://doi.org/10.1016/j.tig.2021.07.009

39. Xiao Q, Bai X, Zhang C, He Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: a review. J Adv Res. 2022;35:215–30. doi: https://doi.org/10.1016/j.jare.2021.05.002

40. Uffelmann E, Huang QQ, Munung NS, De Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Prim. 2021;1(1):59. doi: https://doi.org/10.1038/s43586-021-00056-9

41. Ungricht R, Guibbal L, Lasbennes MC, Orsini V, Beibel M, Waldt A, et al. Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis. Cell Stem Cell. 2022;29(1):160–75. doi: https://doi.org/10.1016/j.stem.2021.11.001

42. Zhao C, Zhang Z, Sun L, Bai R, Wang L, Chen S. Genome sequencing provides potential strategies for drug discovery and synthesis. Acupunct Herb Med. 2023;3(4):244–55. doi: https://doi.org/10.1097/HM9.0000000000000076

43. Li K, Ouyang M, Zhan J, Tian R. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. Cell Genom. 2023;3(5):100300. doi: https://doi.org/10.1016/j.xgen.2023.100300

44. Modell AE, Lim D, Nguyen TM, Sreekanth V, Choudhary A. CRISPR-based therapeutics: current challenges and future applications. Trends Pharmacol Sci. 2022;43(2):151–61. doi: https://doi.org/10.1016/j.tips.2021.10.012

45. Fitzpatrick AH, Rupnik A, O’Shea H, Crispie F, Keaveney S, Cotter P. High throughput sequencing for the detection and characterization of RNA viruses. Front Microbiol. 2021; 12:621719. doi: https://doi.org/10.3389/fmicb.2021.621719

46. Jaruthamsophon K, Thomson PJ, Sukasem C, Naisbitt DJ, Pirmohamed M. HLA Allele-restricted immune-mediated adverse drug reactions: framework for genetic prediction. Annu Rev Pharmacol Toxicol. 2022;62(1):509–29. doi: https://doi.org/10.1146/annurev-pharmtox-052120-014115

47. Tham KM, Yek JJ, Liu CW. Unraveling the genetic link: an umbrella review on HLA-B*15:02 and antiepileptic drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenet Genom. 2024;34(5):154–65. doi: https://doi.org/10.1097/FPC.0000000000000531

48. Stewart S, Dodero-Anillo JM, Guijarro-Eguinoa J, Arias P, Gómez López De Las Huertas A, Seco-Meseguer E, et al. Advancing pharmacogenetic testing in a tertiary hospital: a retrospective analysis after 10 years of activity. Front Pharmacol. 2023;14:1292416. doi: https://doi.org/10.3389/fphar.2023.1292416

49. Hall BT, Eken E, Cavallari LH, Duarte JD, Wiisanen KW, Cicali EJ, et al. Implementing pharmacogenomics clinical decision support: a comprehensive tutorial on how to integrate the epic genomics module. Clin Pharmacol Ther. 2025;117:17. doi: https://doi.org/10.1002/cpt.3599

50. van der Wouden CH, Cambon-Thomsen A, Cecchin E, Cheung KC, Dávila-Fajardo CL, Deneer VH, et al. Implementing pharmacogenomics in Europe: design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin Pharmacol Ther. 2017;101(3):341–58. doi: https://doi.org/10.1002/cpt.602

51. Owusu Obeng A, Fei K, Levy KD, Elsey AR, Pollin TI, Ramirez AH, et al. Physician-reported benefits and barriers to clinical implementation of genomic medicine: a multi-site IGNITE-network survey. J Pers Med. 2018;8(3):24. doi: https://doi.org/10.3390/jpm8030024

52. Jeiziner C, Wernli U, Suter K, Hersberger KE, Meyer Zu Schwabedissen HE. HLA-associated adverse drug reactions-scoping review. Clin Transl Sci. 2021;14(5):1648–58. doi: https://doi.org/10.1111/cts.13062

53. Elbahnsi A, Dudas B, Callebaut I, Hinzpeter A, Miteva MA. ATP-binding cassette and solute carrier transporters: understanding their mechanisms and drug modulation through structural and modeling approaches. Pharmaceuticals. 2024;17(12):1602. doi: https://doi.org/10.3390/ph17121602

54. Giacomini KM, Yee SW, Koleske ML, Zou L, Matsson P, Chen EC, et al. New and emerging research on solute carrier and ATP binding cassette transporters in drug discovery and development: outlook from the international transporter consortium. Clin Pharmacol Ther. 2022;112(3):540–61. doi: https://doi.org/10.1002/cpt.2627

55. Turongkaravee S, Jittikoon J, Lukkunaprasit T, Sangroongruangsri S, Chaikledkaew U, Thakkinstian A. A systematic review and meta-analysis of genotype-based and individualized data analysis of SLCO1B1 gene and statin-induced myopathy. Pharmacogenomics J.2021;21(3):296–307. doi: https://doi.org/10.1038/s41397-021-00208-w

56. Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol. 2019;12(5):407–42. doi: https://doi.org/10.1080/17512433.2019.15 97706

57. Bironzo P, Reale ML, Sperone T, Tabbò F, Caglio A, Listì A, et al. Clinical and molecular features of epidermal growth factor receptor (EGFR) mutation positive non-small-cell lung cancer (NSCLC) patients treated with tyrosine kinase inhibitors (TKIs): predictive and prognostic role of co-mutations. Cancers. 2021;13(10):2425. doi: https://doi.org/10.3390/cancers13102425

58. Lauschke VM, Ingelman-Sundberg M. Emerging strategies to bridge the gap between pharmacogenomic research and its clinical implementation. NPJ Genom Med. 2020;5(1):9. doi: https://doi.org/10.1038/s41525-020-0119-2

59. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JH, Swen JJ, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210–6. doi: https://doi.org/10.1002/cpt.911

60. Cavallari LH, Hicks JK, Patel JN, Elchynski AL, Smith DM, Bargal SA, et al. The Pharmacogenomics global research network implementation working group: global collaboration to advance pharmacogenetic implementation. Pharmacogenet Genom. 2025;35(1):1. doi: https://doi.org/10.1097/FPC.0000000000000547

61. Thon N, Kreth S, Kreth FW. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Therapy. 2013;6:1363–72. doi: https://doi.org/10.2147/OTT.S50208

62. Zhao G, Wang Q, Li S, Wang X. Resistance to hypomethylating agents in myelodysplastic syndrome and acute myeloid leukemia from clinical data and molecular mechanism. Front Oncol. 2021;11:706030. doi: https://doi.org/10.3389/fonc.2021.706030

63. Suraweera A, O’Byrne KJ, Richard DJ.Epigenetic drugs in cancer therapy. Cancer Metastasis Rev. 2025;44(1):37. doi: https://doi.org/10.1007/s10555-025-10253-7

64. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–50. doi: https://doi.org/10.1038/nature15817

65. Chan HT, Chin YM, Low SK. The roles of common variation and somatic mutation in cancer pharmacogenomics. Oncol Ther. 2019;7(1):1–32. doi: https://doi.org/10.1007/s40487-018-0090-6

66. Kundu S, Srivastava S, Singh S. Somatic mutation: pharmacogenomics in oncology care. In: Sobti RC, Krishan A, Sobti A, editors. Biomarkers in cancer detection and monitoring of therapeuticsUSA: Academic Press (Elsevier); 2024. pp. 329–56. doi: https://doi.org/10.1016/B978-0-323-95116-6.00004-9

67. Saad R, Rizkallah MR, Aziz RK. Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut associated microbes. Gut Pathogens. 2012;4:16. doi: https://doi.org/10.1186/1757-4749-4-16

68. Sellmyer MA, Lee IK, Mankoff DA. Building the bridge: molecular imaging biomarkers for 21st century cancer therapies. J Nucl Med. 2021;62(12):1672–6. doi: https://doi.org/10.2967/jnumed.121.262484

69. Patrick PS, Kolluri KK, Zaw Thin M, Edwards A, Sage EK, Sanderson T, et al. Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Res Ther. 2020;11(1):1–2. doi: https://doi.org/10.1186/s13287-020-01770-z

70. Bustin SA, Jellinger KA. Advances in molecular medicine: unravelling disease complexity and pioneering precision healthcare. Int J Mol Sci. 2023;24(18):14168. doi: https://doi.org/10.3390/ijms241814168

71. Butnariu LI, Gorduza EV, Florea L, ?arc? E, Mois? ?M, Tradafir LM, et al. The genetic architecture of the etiology of lower extremity peripheral artery disease: current knowledge and future challenges in the era of genomic medicine. Int J Mol Sci. 2022;23(18):10481. doi: https://doi.org/10.3390/ijms231810481

72. Wyss R, Glynn RJ, Gagne JJ.A review of disease risk scores and their application in pharmacoepidemiology. Curr Epidemiol Rep. 2016;3:277–84. doi: https://doi.org/10.1007/s40471-016-0088-2

73. Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther. 2018;18(12):1257– 70. doi: https://doi.org/10.1080/14712598.2018.1545836

74. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331–44. doi: https://doi.org/10.1038/nrg.2016.160

75. Xie HG, Jia YM, Tai T, Ji JZ. Overcoming clopidogrel resistance: three promising novel antiplatelet drugs developed in China. J Cardiovasc Pharmacol 2017;70(6):356–61. doi: https://doi.org/10.1097/FJC.0000000000000529

76. Wang W, Shao C, Xu B, Wang J, Yang M, Chen J, et al. CYP2C19 genotype has prognostic value in specific populations following coronary stenting. Ann Transl Med. 2021;9(13):1066. doi: https://doi.org/10.21037/atm-20-7724

77. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Cs?szi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. doi: https://doi.org/10.1056/NEJMoa1606774

78. Caraballo PJ, Sutton JA, Giri J, Wright JA, Nicholson WT, Kullo IJ, et al. Integrating pharmacogenomics into the electronic health record by implementing genomic indicators. J Am Med Inform Assoc. 2020;27(1):154–8. doi: https://doi.org/10.1093/jamia/ocz177

79. Chang BL, Liu JR, Chang SH, See LC. Impact on carbamazepine usage and cutaneous adverse reactions before and after the reimbursement of HLA-B*1502 genotyping in Taiwan: 2000–2017. Epilepsia. 2023;64(10):2679–89. doi: https://doi.org/10.1111/epi.17726

80. Nguyen KA, Li L, Lu D, Yazdanparast A, Wang L, Kreutz RP, et al. A comprehensive review and meta-analysis of risk factors for statin-induced myopathy. Eur J Clin Pharmacol. 2018;74:1099–110. doi: https://doi.org/10.1007/s00228-018-2482-9

81. Klocker EV, Suppan C. Biomarkers in Her2-positive disease. Breast Care. 2020;15(6):586–93. doi: https://doi.org/10.1159/000512283

82. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447. doi: https://doi.org/10.1016/j.pharmthera.2019.107447

83. Chan CW, Law BM, So WK, Chow KM, Waye MM. Pharmacogenomics of breast cancer: highlighting CYP2D6 and tamoxifen. J Cancer Res Clin Oncol. 2020;146(6):1395–404. doi: https://doi.org/10.1007/s00432-020-03206-w

84. Wu J, Lin Z. Non-small cell lung cancer targeted therapy: drugs and mechanisms of drug resistance. Int J Mol Sci. 2022;23(23):15056. doi: https://doi.org/10.3390/ijms232315056

85. Russell LE, Schwarz UI. Variant discovery using next-generation sequencing and its future role in pharmacogenetics. Pharmacogenomics. 2020;21(7):471–86. doi: https://doi.org/10.2217/pgs-2019-0190

86. Mall MA, Mayer-Hamblett N, Rowe SM. Cystic fibrosis: emergence of highly effective targeted therapeutics and potential clinical implications. Am J Respir Crit Care Med. 2020;201(10):1193–208. doi: https://doi.org/10.1164/rccm.201910-1943SO

87. Adam G, Rampášek L, Safikhani Z, Smirnov P, Haibe-Kains B, Goldenberg A. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis Oncol. 2020;4(1):19. doi: https://doi.org/10.1038/s41698-020-0122-1

88. Chawla R, Rani V, Mishra M. Integrated role of nanotechnology and pharmacogenetics in diagnosis and treatment. Pharmacogenetics. 2021;24:11. doi: https://doi.org/10.5772/intechopen.97643

89. Zhou Y, Lauschke VM. Challenges related to the use of next-generation sequencing for the optimization of drug therapy. In: Cascorbi I, Schwab M, editors. Precision medicine. Cham, Switzerland: Springer International Publishing; 2022. pp. 237–260. doi: https://doi.org/10.1007/164_2022_596

90. Elgarhy FM, Borham A, Alziny N, AbdElaal KR, Shuaib M, Musaibah AS, et al. From drug discovery to drug approval: a comprehensive review of the pharmacogenomics status quo with a special focus on Egypt. Pharmaceuticals. 2024;17(7):881. doi: https://doi.org/10.3390/ph17070881

91. Manickam K, McClain MR, Demmer LA, Biswas S, Kearney HM, Malinowski J, et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(11):2029– 37. doi: https://doi.org/10.1038/s41436-021-01242-6

92. Liu Z, Roberts R, Mercer TR, Xu J, Sedlazeck FJ, Tong W. Towards accurate and reliable resolution of structural variants for clinical diagnosis. Genome Biol. 2022;23(1):68. doi: https://doi.org/10.1186/s13059-022-02636-8

93. Corpas M, Pius M, Poburennaya M, Guio H, Dwek M, Nagaraj S, et al. Bridging genomics’ greatest challenge: the diversity gap. Cell Genomics. 2025;5(1):100724. doi: https://doi.org/10.1016/j.xgen.2024.100724

94. Gupta S, Kapoor M, Debnath SK. Artificial Intelligence-enabled security for healthcare systems: safeguarding patient data and improving services. Switzerland: Springer Nature; 2025. doi: https://doi.org/10.1007/978-3-031-82810-2_1

95. Corrales Compagnucci M, Fenwick M. A multidisciplinary perspective on cross-border health data transfers: privacy, risks and solutions. In: Compagnucci Mc, Fenwick M, editors. International transfers of health data: a global perspective. Singapore: Springer Nature Singapore; 2025. pp. 1–15. doi: https://doi.org/10.1007/978-981-97-9983-1_1

96. Kalkman S, Mostert M, Gerlinger C, van Delden JJ, van Thiel GJ.Responsible data sharing in international health research: a systematic review of principles and norms. BMC Med Ethics. 2019;20(1):21. doi: https://doi.org/10.1186/s12910-019-0359-9

97. Munung NS. Science and society: pathways to equitable access and delivery of genomics medicine in Africa. Curr Genet Med Rep. 2025;13(1):1. doi: https://doi.org/10.1007/s40142-024-00211-0

98. Shriver SP, Adams D, McKelvey BA, McCune JS, Miles D, Pratt VM, et al. Overcoming barriers to discovery and implementation of equitable pharmacogenomic testing in oncology. J Clin Oncol. 2024;42(10):1181–92. doi: https://doi.org/10.1200/JCO.23.01748

99. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177(1):26–31. doi: https://doi.org/10.1016/j.cell.2019.02.048

100. Gyngell C, Douglas T, Savulescu J.The ethics of germline gene editing. J Appl Philos. 2017;34(4):498–513. doi: https://doi.org/10.1111/japp.12249

101. Leslie D. Understanding artificial intelligence ethics and safety: a guide for the responsible design and implementation of AI systems in the public sector. USA: Alan Turing Institute; 2019. doi: https://doi.org/10.2139/ssrn.3403301

102. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16(6):321–32. doi: https://doi.org/10.1038/nrg3920

103. Baudhuin LM, Ferber MJ.Miniaturized nanopore DNA sequencing: accelerating the path to precision medicine. Clin Chem. 2017;63(3):632–4. doi: https://doi.org/10.1373/clinchem.2016.261420

104. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490– 507. doi: https://doi.org/10.1038/s41580-019-0131-5

Article Metrics
5 Views 0 Downloads 5 Total

Year

Month

Related Search

By author names