Antihyperglycemic and hypoglycemic activities of Castanopsis costata: An experimental study with in vitro, in vivo, and histopathological evaluation

Maulana Yusuf Alkandahri Asman Sadino Wilda Fhitriany Usman Eva Feriadi Zulpakor Oktoba Atri Sri Ulandari Ana Yulyana Annis Fathurrohmah Shofa Khairunnisa Indah Sari Amanatun Nisa Annisa Rizqya Salmaduri   

Open Access   

Published:  Sep 19, 2025

DOI: 10.7324/JAPS.2025.264681
Abstract

Several currently available antihyperglycemic drugs for diabetes mellitus have many weaknesses and adverse side effects, underscoring the need to find alternative therapies derived from medicinal plants, such as Castanopsis costata. Therefore, the objective of this study was to investigate antihyperglycemic and hypoglycemic effects of ethanol extract in C. costata (EECC) with in vitro and in vivo experimental models as well as identify the chemical compounds. The inhibitory activity of α-amylase and α-glucosidase by EECC was assessed using the DNSA and p-nitrophenyl-α-D-glucoside methods. The activity of lowering blood glucose level by EECC was examined in three test models in mice, namely normoglycemia, oral glucose tolerance test, and alloxan-induced hyperglycemia mice models, as well as histopathological studies of pancreatic tissue. The chemical compounds contained in EECC were identified using liquid chromatography tandem mass spectrometry. The results showed that EECC had inhibitory activity against α-amylase and α-glucosidase with respective IC50 values of 454.72 ± 0.86 and 575.08 ± 0.93 μg/ml. The administration of EECC caused a significant decrease in BGL in the three test models and a significant improvement from histopathological changes in pancreatic tissue. Meanwhile, chemical compound identification results showed that there were 14 compounds contained in EECC. This study showed that EECC has hypoglycemic and antihyperglycemic effects and was able to restore histopathological changes.


Keyword:     Castanopsis costata hyperglycemic in vitro in vivo histopathological


Citation:

Alkandahri MY, Sadino A, Usman WF, Feriadi E, Oktoba Z, Ulandari AS, Yulyana A, Fathurrohmah A, Khairunnisa S, Nisa ISA, Salmaduri AR. Antihyperglycemic and hypoglycemic activities of Castanopsis costata: An experimental study with in vitro, in vivo, and histopathological evaluation. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.264681

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J.Epidemiology of type 2 diabetes—Global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107–11. doi: https://doi.org/10.2991/jegh.k.191028.001

2. Yan Y, Wu T, Zhang M, Li C, Liu Q, Li F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health. 2022;22(1):1–6. doi: https://doi.org/10.1186/s12889-022-13759-9

3. American Diabetes Association Professional Practice Committee. Diagnosis and classification of diabetes: standards of care in diabetes-2024. Diabetes Care. 2024;47(Suppl 1):S20–42. doi: https://doi.org/10.2337/dc24-S002

4. Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017;6(9):943–57. doi: https://doi.org/10.1016/j.molmet.2017.06.019

5. Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: an early indicator of metabolic dysfunction. J Endocr Soc. 2019;3(9):1727–47. doi: https://doi.org/10.1210/js.2019-00065

6. Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T. Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):110–16. doi: https://doi.org/10.2174/1570161117666190405165151

7. Aljazzaf B, Regeai S, Elghmasi S, Alghazir N, Balgasim A, Ismail IMH, et al. Evaluation of antidiabetic effect of combined leaf and seed extracts of Moringa oleifera (Moringaceae) on alloxan-induced diabetes in mice: a biochemical and histological study. Oxid Med Cell Longev. 2023;2023(1):1–21. doi: https://doi.org/10.1155/2023/9136217

8. Si YL, Zhao YL, Hao HJ, Fu XB, Han WD. MSCs: biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev. 2011;10(1):93–103. doi: https://doi.org/10.1016/j.arr.2010.08.005

9. Magno LD, Pastena FD, Bordone R, Coni S, Canettieri G. The mechanism of action of biguanides: new answers to a complex question. Cancers. 2022;14(13):1–32. doi: https://doi.org/10.3390/cancers14133220

10. Al-Saleh Y, Sabico S, Al-Furqani A, Jayyousi A, Alromaihi D, Ba-Essa E, et al. Sulfonylureas in the current practice of type 2 diabetes management: are they all the same? Consensus from the gulf cooperation council (GCC) countries advisory board on sulfonylureas. Diabetes Ther. 2021;12(8):2265–6. doi: https://doi.org/10.1007/s13300-021-01109-8

11. Lv W, Wang X, Xu Q, Lu W. Mechanisms and characteristics of sulfonylureas and glinides. Curr Top Med Chem. 2020;20(1):37–56. doi: https://doi.org/10.2174/1568026620666191224141617

12. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: a critical review. Bioorg Chem. 2018;77:548–67. doi: https://doi.org/10.1016/j.bioorg.2018.02.009

13. Alssema M, Ruijgrok C, Blaak EE, Egli L, Dussort P, Vinoy S, et al. Effects of alpha-glucosidase-inhibiting drugs on acute postprandial glucose and insulin responses: a systematic review and meta-analysis. Nutr Diabetes. 2021;11(1):1–9. doi: https://doi.org/10.1038/s41387-021-00152-5

14. Mak WY, Nagarajah JR, Halim HA, Ramadas A, Pauzi ZM, Pee LT, et al. Dipeptidyl peptidase-4 inhibitors use in type II diabetic patients in a tertiary hospital. J Pharm Policy Pract. 2020;13:1–8. doi: https://doi.org/10.1186/s40545-020-00238-y

15. Kruse T, Hansen JL, Dahl K, Schäffer L, Sensfuss U, Poulsen C, et al. Development of Cagrilintide, a long-acting amylin analogue. J Med Chem. 2021;64(15):11183–94. doi: https://doi.org/10.1021/acs. jmedchem.1c00565

16. Guyton J, Jeon M, Brooks A. Glucagon-like peptide 1 receptor agonists in type 1 diabetes mellitus. Am J Health Syst Pharm. 2019;76(21):1739–48. doi: https://doi.org/10.1093/ajhp/zxz179

17. Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling plant natural chemical diversity for drug discovery purposes. Front Pharmacol. 2020;11:1–37. doi: https://doi.org/10.3389/fphar.2020.00397

18. Riaz Z, Ali MN, Qureshi Z, Mohsin M. In vitro investigation and evaluation of novel drug based on polyherbal extract against type 2 diabetes. J Diabetes Res. 2020;2020(1):1–9. doi: https://doi.org/10.1155/2020/7357482

19. Ramadan BK, Schaalan MF, Tolba AM. Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complement Altern Med. 2017;17(1):1– 10. doi: https://doi.org/10.1186/s12906-016-1530-1

20. Alkandahri MY, Berbudi A, Subarnas A. Active compounds and antimalaria properties of some medicinal plants in Indonesia – a review. Sys Rev Pharm. 2018;9(1):64–9. doi: https://doi.org/10.5530/srp.2018.1.13

21. Alkandahri MY, Yuniarsih N, Berbudi A, Subarnas A. Antimalaria activities of several active compounds from medicinal plants. Pharmacogn J.2022;14(1):245–52. doi: https://doi.org/10.5530/pj.2022.14.30

22. Alkandahri MY, Pamungkas BT, Oktoba Z, Shafirany MZ, Sulastri L, Arfania M, et al. Hepatoprotective effect of kaempferol: a review of the dietary sources, bioavailability, mechanisms of action, and safety. Adv Pharmacol Pharm Sci. 2023;2023(1):1–16. doi: https://doi.org/10.1155/2023/1387665

23. Gunarti NS, Alkandahri MY, Wahyuningsih ES, Agustina P, Mursal ILP, Hidayah H, et al. Evaluation of antipyretic and antioxidant activities of ten indigenous medicinal plants of Tirtajaya, Karawang Regency, West Java, Indonesia. Indian J Pharm Educ Res. 2025;59(1):252–63. doi: https://doi.org/10.5530/ijper.20256381

24. Farhamzah, Kusumawati AH, Alkandahri MY, Hidayah H, Sujana D, Gunarti NS, et al. Sun protection factor activity of black glutinous rice emulgel extract (Oryza sativa var glutinosa). Indian J Pharm Educ Res. 2022;56(1):302–10. doi: https://doi.org/10.5530/ijper.56.1.36

25. Yuniarsih N, Hidayah H, Gunarti NS, Kusumawati AH, Farhamzah F, Sadino A, et al. Evaluation of wound-healing activity of hydrogel extract of Sansevieria trifasciata leaves (Asparagaceae). Adv Pharmacol Pharm Sci. 2023;2023(1):1–10. doi: https://doi.org/10.1155/2023/7680518

26. El-Abhar HS, Schaalan MF. Phytotherapy in diabetes: review on potential mechanistic perspectives. World J Diabetes. 2014;5(2):176– 97. doi: https://doi.org/10.4239/wjd.v5.i2.176

27. Torres-Vanda M, Gutiérrez-Aguilar R. Mexican plants involved in glucose homeostasis and body weight control: systematic review. Nutrients. 2023;15(9):1–25. doi: https://doi.org/10.3390/nu15092070

28. Babaiedarzi A, Ghanbari S, Seresht MM, Nasiri M. Antidiabetic effects of Scrophularia striata ethanolic extract via suppression of Pdx1 and Ins1 expression in pancreatic tissues of diabetic rats. Sci Rep. 2022;12(1):1–9. doi: https://doi.org/10.1038/s41598-022- 13698-w

29. Derosa G, D’Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: an updated review of the literature. Phytother Res. 2022;36(10):3709–65. doi: https://doi.org/10.1002/ptr.7564

30. Kusumawati AH, Farhamzah F, Alkandahri MY, Sadino A, Agustina LS, Apriana SD. Antioxidant activity and sun protection factor of black glutinous rice (Oryza sativa var. glutinosa). Trop J Nat Prod Res. 2021;5(11):1958–61. doi: https://doi.org/10.26538/tjnpr/v5i11.11

31. Abdelrazek HMA, Kilany OE, Muhammad MAA, Tag HM, Abdelazim AM. Black seed thymoquinone improved insulin secretion, hepatic glycogen storage, and oxidative stress in streptozotocin-induced diabetic male wistar rats. Oxid Med Cell Longev. 2018;2018(1):1– 10. doi: https://doi.org/10.1155/2018/8104165

32. Soepadmo E, Saw LG, Chung RCK, Kiew R. Tree flora of Sabah and Sarawak. Malaysia: Sabah Forestry Department, Forest Research Institute Malaysia (FRIM), Sarawak Forestry Department; 2011. Vol 7. 450 pp. Available from: https://www.mybis.gov.my/pb/118

33. Alkandahri MY, Berbudi A, Utami NV, Subarnas A. Antimalarial activity of extract and fractions of Castanopsis costata (Blume) A.DC. Avicenna J Phytomed. 2019;9(5):474–81. doi: https://doi.org/10.22038/ajp.2019.13188

34. Alkandahri MY, Arfania M, Abriyani E, Ridwanuloh D, Farhamzah, Fikayuniar L, et al. Evaluation of antioxidant and antipyretic effects of ethanolic extract of Cep-cepan leaves (Castanopsis costata (Blume) A.DC). J Adv Pharm Educ Res. 2022;12(3):107–12. doi: https://doi.org/10.51847/twcOIyzqTM

35. Alkandahri MY, Kusumiyati K, Renggana H, Arfania M, Frianto D, Wahyuningsih ES, et al. Antihyperlipidemic activity of extract and fractions of Castanopsis costata leaves on rats fed with high cholesterol diet. RAS?YAN J Chem. 2022;15(4):2350–8. doi: http://doi.org/10.31788/RJC.2022.1547015

36. Alkandahri MY, Sholih MG, Fadilah NN, Arfania M, Amal S, Frianto D, et al. Evaluation of antidiarrheal, antispasmodic, and antisecretory activities of extract and fractions of Castanopsis costata leaves in animal models. Pharmacogn J.2023;15(1):31–7. doi: http://doi.org/10.5530/pj.2023.15.5

37. Alkandahri MY, Sadino A, Pamungkas BT, Oktoba Z, Arfania M, Yuniarsih N, et al. Pharmacological evaluation of anti-inflammatory, antipyretic, analgesic, and antioxidant activities of Castanopsis costata leaf fractions (water, ethyl acetate, and n-hexane fractions): the potential medicinal plants from North Sumatra, Indonesia. Res Pharm Sci. 2024;19(3):251–66. doi: http://doi.org/10.4103/RPS. RPS_201_23

38. Alkandahri MY, Sujana D, Hasyim DM, Shafirany MZ, Sulastri L, Arfania M, et al. Antidiabetic activity of extract and fractions of Castanopsis costata leaves on alloxan-induced diabetic mice. Pharmacogn J.2021;13(6(Suppl)):1589–93. doi: http://doi.org/10.5530/pj.2021.13.204

39. Bule M, Abdurahman A, Nikfar S, Abdollahi M, Amini M. Antidiabetic effect of quercetin: a systematic review and meta-analysis of animal studies. Food Chem Toxicol. 2019;125:494–502. doi: http://doi.org/10.1016/j.fct.2019.01.037

40. Hidayah H, Amal S, Yuniarsih N, Farhamzah, Kusumawati AH, Gunarti NS, et al. Sun protection factor activity of jamblang leaves serum extract (Syzygium cumini). Pharmacogn J.2023;15(1):134– 40. doi: http://doi.org/10.5530/pj.2023.15.18

41. Alkandahri MY, Maulana YE, Subarnas A, Kwarteng A, Berbudi A. Antimalarial activity of extract and fractions of Cayratia trifolia (L.) Domin. Int J Pharm Res. 2020;12(Suppl 1):1435–41. doi: https://doi.org/10.31838/ijpr/2020.SP1.218

42. Wickramaratne MN, Punchihewa JC, Wickramaratne DB. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement Altern Med. 2016;16:1–5. doi: https://doi.org/10.1186/s12906-016-1452-y

43. Sadeghi M, Khomartash MS, Gorgani-Firuzjaee S, Vahidi M, Khiavi FM, Taslimi P. α-glucosidase inhibitory, antioxidant activity, and GC/MS analysis of Descurainia sophia methanolic extract: In vitro, in vivo, and in silico studies. Arabian J Chem 2022;15(9):1–15. doi: https://doi.org/10.1016/j.arabjc.2022.104055

44. Alema NM, Periasamy G, Sibhat GG, Tekulu GH, Hiben MG. Antidiabetic activity of extracts of Terminalia brownii Fresen. stem bark in mice. J Exp Pharmacol. 2020;12:61–71. doi: https://doi.org/10.2147/JEP.S240266

45. Wakene W, Asmamaw S, Kahaliw W. Evaluation of antidiabetic and antioxidant activity of leaf extract and solvent fractions of Hypoestes forskaolii (Val) (Acanthaceae) in mice. J Exp Pharmacol. 2021;13:859–72. doi: https://doi.org/10.2147/JEP.S318696

46. Tafesse TB, Hymete A, Mekonnen Y, Tadesse M. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice. BMC Complement Altern Med. 2017;17(1):1–9. doi: https://doi.org/10.1186/s12906- 017-1757-5

47. Slaoui M, Fiette L. Histopathology procedures: from tissue sampling to histopathological evaluation. Methods Mol Biol. 2011;691:69–82. doi: https://doi.org/10.1007/978-1-60761-849-2_4

48. Dyson NJ, Kattner N, Honkanen-Scott M, Hunter B, Doyle JA, White K, et al. Development and application of a semi quantitative scoring method for ultrastructural assessment of acute stress in pancreatic islets. Transplant Direct, 2021;8(1), 1–12. doi: https://doi.org/10.1097/TXD.0000000000001271

49. Hanif U, Raza C, Liaqat I, Rani M, Afifi SM, Esatbeyoglu T, et al. Evaluation of safety of stewart’s wood fern (Dryopteris stewartii) and its anti-hyperglycemic potential in alloxan-induced diabetic mice. Int J Mol Sci. 2022;23(20):1–15. doi: https://doi.org/10.3390/ijms232012432

50. Zhang X, Yang S, Chen J, Su Z. Unraveling the regulation of hepatic gluconeogenesis. Front Endocrinol. 2019;9:1–17. doi: https://doi.org/10.3389/fendo.2018.00802

51. Bankir L, Bouby N, Speth RC, Velho G, Crambert G. Glucagon revisited: coordinated actions on the liver and kidney. Diabetes Res Clin Pract. 2018;146:119–29. doi: https://doi.org/10.1016/j.diabres.2018.10.004

52. Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48(3):1–19. doi: https://doi.org/10.1038/emm.2016.6

53. Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the american diabetes association (ADA) and the european association for the study of diabetes (EASD). Diabetes Care. 2022;45(11):2753–86. doi: https://doi.org/10.2337/dci22-0034

54. Gunjal A, Walunj M, Aghera H, Nariya M, Goyal MR. Hypoglycemic and anti-hyperglycemic activity of Triphal?di granules in mice. Anc Sci Life. 2016;35(4):207–11. doi: https://doi.org/10.4103/0257-7941.188177

55. Wang H, Zhang K, Chen X, Han M, Lu J, Zhang Y. In vitro and in vivo evaluation of antidiabetic properties and mechanisms of Ficus tikoua Bur. Nutrients. 2022;14(20):1–18. doi: https://doi.org/10.3390/nu14204413

56. Telagari M, Hullatti K. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian J Pharmacol. 2015;47(4):425–9. doi: https://doi.org/10.4103/0253-7613.161270

57. Kifle ZD, Enyew EF. Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica Fresen (Melianthaceae). J Evid Based Integr Med. 2020;25:1–11. doi: https://doi.org/10.1177/2515690X20935827

58. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216–26. doi: https://doi.org/10.1007/s00125-007-0886-7

59. Jaber SA. In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Quercus coccifera (Oak tree) leaves extracts. Saudi J Biol Sci. 2023;30(7):1–6. doi: https://doi.org/10.1016/j.sjbs.2023.103688

60. Barber E, Houghton MJ, Williamson G. Flavonoids as human intestinal α-glucosidase inhibitors. Foods. 2021;10(8):1–22. doi: https://doi.org/10.3390/foods10081939

61. Bermont F, Hermant A, Benninga R, Chabert C, Jacot G, Santo- Domingo J, et al. Targeting mitochondrial calcium uptake with the natural flavonol kaempferol, to promote metabolism/secretion coupling in pancreatic β-cells. Nutrients. 2020;12(2):1–15. doi: https://doi.org/10.3390/nu12020538

62. Yang Y, Chen Z, Zhao X, Xie H, Du L, Gao H, et al. Mechanisms of Kaempferol in the treatment of diabetes: a comprehensive and latest review. Front Endocrinol. 2022;13:1–15. doi: https://doi.org/10.3389/fendo.2022.990299

63. Kitakaze T, Jiang H, Nomura T, Hironao KY, Yamashita Y, Ashida H. Kaempferol promotes glucose uptake in myotubes through a JAK2- dependent pathway. J Agric Food Chem. 2020;68(47):13720–9. doi: https://doi.org/10.1021/acs.jafc.0c05236

64. Alkandahri MY, Sadino A, Pamungkas BT, Oktoba Z, Arfania M, Yuniarsih N, et al. Potential nephroprotective effect of kaempferol: biosynthesis, mechanisms of action, and clinical prospects. Adv Pharmacol Pharm Sci. 2024;2024(1):1–17. doi: https://doi.org/10.1155/2024/8907717

65. Alkhalidy H, Moore W, Wang A, Luo J, McMillan RP, Wang Y, et al. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J Nutr Biochem. 2018;58:90–101. doi: https://doi.org/10.1016/j.jnutbio.2018.04.014

66. Parveen S, Bhat IUH, Bhat R. Kaempferol and its derivatives: biological activities and therapeutic potential. Asian Pac J Trop Biomed. 2023;13(10):411–20.doi: https://doi.org/10.4103/2221-1691.387747

67. Li H, Ji HS, Kang JH, Shin DH, Park HY, Choi MS, et al. Soy leaf extract containing kaempferol glycosides and pheophorbides improves glucose homeostasis by enhancing pancreatic β-cell function and suppressing hepatic lipid accumulation in db/db mice. J Agric Food Chem. 2015;63(32):7198–210. doi: https://doi.org/10.1021/acs.jafc.5b01639

68. Alqudah A, Qnais E, Alqudah M, Gammoh O, Wedyan M, Abdalla SS. Isorhamnetin as a potential therapeutic agent for diabetes mellitus through PGK1/AKT activation. Arch Physiol Biochem. 2024;130(6):866–76. doi: https://doi.org/10.1080/13813455.2024.2323947

69. Alqudah A, Qnais EY, Wedyan MA, Altaber S, Bseiso Y, Oqal M, et al. Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/streptozotocin diabetic mice model. Molecules. 2023;28(2):1–14. doi: https://doi.org/10.3390/molecules28020502

70. Kalai FZ, Boulaaba M, Ferdousi F, Isoda H. Effects of isorhamnetin on diabetes and its associated complications: a review of in vitro and in vivo studies and a post hoc transcriptome analysis of involved molecular pathways. Int J Mol Sci. 2022;23(2):1–25. doi: https://doi.org/10.3390/ijms23020704

71. Nguyen-Ngo C, Salomon C, Quak S, Lai A, Willcox JC, Lappas M. Nobiletin exerts anti-diabetic and anti-inflammatory effects in an in vitro human model and in vivo murine model of gestational diabetes. Clin Sci. 2020;134(6):571–92. doi: https://doi.org/10.1042/CS20191099

72. Kaneko YK, Tara Y, Ihim SA, Yamamoto M, Kaji M, Ishikawa T. Nobiletin ameliorates glucose tolerance by protecting against β-cell loss in type-2 diabetic db/db mice. Phytomed Plus. 2022;2(4):1–6. doi: https://doi.org/10.1016/j.phyplu.2022.100367

73. Takii M, Kaneko YK, Akiyama K, Aoyagi Y, Tara Y, Asakawa T, et al. Insulinotropic and anti-apoptotic effects of nobiletin in INS-1D β-cells. J Funct Foods 2017;30:8–15. doi: https://doi.org/10.1016/j.jff.2016.12.037

74. Muhtadi, Primarianti AU, Sujono TA. Antidiabetic activity of durian (Durio zibethinus Murr.) and rambutan (Nephelium lappaceum L.) fruit peels in alloxan diabetic rats. Procedia Food Sci. 2015;3:255– 61. doi: https://doi.org/10.1016/j.profoo.2015.01.028

Article Metrics
6 Views 4 Downloads 10 Total

Year

Month

Related Search

By author names