Tocotrienol-rich fraction (TRF) is a potent antioxidant capable of counteracting skin aging-related changes. However, TRF poses challenges for effective skin delivery. This study aimed to optimize the concentration of terpenes in a proniosomal gel (PNG) for TRF delivery and evaluate its physical properties, antioxidant activity, and topical release kinetics. The PNGs were prepared using the coacervation-phase separation technique. Various concentrations of d-limonene and squalene, as well as combinations of both, were tested to determine their effects on the formulation. The antioxidant activities of the sample were analyzed using 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and the in vitro release of TRF was studied through a Franz diffusion cell. All formulations displayed particle size ranging from 271.60 to 416.40 nm. The optimized PNG (M5), which is composed of 2.5% d-limonene and 2.5% squalene in the PNG, exhibited the highest entrapment efficiency (98.530% ± 0.048%) and antioxidant activity (2.951 ± 0.028 mg TE/g sample). A high flow point and shear-thinning flow characteristics were found by rheological characterization. Its predominant elastic nature in both amplitude and frequency sweeps demonstrated that the M5 rheological and stability characteristics were satisfactory. The release profile of M5 showed sustained and controlled TRF release by non-Fickian diffusion, while the control formulations showed an immediate release of TRF. The study successfully determined the optimal concentration of terpenes in the PNGs with the greatest physical and antioxidant properties while outperforming control samples for the TRF release.
Fong TT, Chaiku P, Nyam KL, Chu CC. Development and evaluation of a proniosomal gel for palm tocotrienol-rich fraction topical delivery. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.v15.i12.6
1. Ghazali NI, Mohd Rais RZ, Makpol S, Chin KY, Yap WN, Goon JA. Effects of tocotrienol on aging skin: a systematic review. Front Pharmacol. 2022;13:1006198. doi: https://doi.org/10.3389/FPHAR.2022.1006198/BIBTEX
2. Luebberding S, Krueger N, Kerscher M. Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH. Int J Cosmet Sci. 2013;35:477–83. doi: https://doi.org/10.1111/ICS.12068
3. Pham J, Nayel A, Hoang C, Elbayoumi T. Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas. Drug Deliv. 2016;23:1514–24. doi: https://doi.org/10.3109/10717544.2014.966925
4. Chu CC, Hasan ZABA, Tan CP, Nyam KL. In vitro antiaging evaluation of sunscreen formulated from nanostructured lipid crrier and tocotrienol-rich fraction. J Pharm Sci. 2021;110:3929–36. doi: https://doi.org/10.1016/J.XPHS.2021.08.020
5. Nair RS, Billa N, Leong CO, Morris AP. An evaluation of tocotrienol ethosomes for transdermal delivery using Strat-M® membrane and excised human skin. Pharm Dev Technol. 2021;26:243–51. doi: https://doi.org/10.1080/10837450.2020.1860087
6. Mittal S, Chaudhary A, Chaudhary A, Kumar A. Proniosomes: the effective and efficient drug-carrier system. Ther Deliv. 2020;11:125–37. doi: https://doi.org/10.4155/tde-2019-0065
7. Madan JR, Ghuge NP, Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Drug Deliv Transl Res. 2016;6:511–8. doi: https://doi.org/10.1007/S13346-016-0296-9/METRICS
8. Vora B, Khopade AJ, Jain NK. Proniosome based transdermal delivery of levonorgestrel for effective contraception. J Contr Release 1998;54:149–65. doi: https://doi.org/10.1016/S0168-3659(97)00100-4
9. Ibrahim MMA, Sammour OA, Hammad MA, Megrab NA. In vitro evaluation of proniosomes as a drug carrier for flurbiprofen. AAPS PharmSciTech. 2008;9:782–90. doi: https://doi.org/10.1208/S12249-008-9114-0/METRICS
10. Ahmed MA, Abdelgawad WY, Gad MK, Mohamed MI. A novel approach for the treatment of oral ulcerative lesion using mucoadhesive proniosome gel. J Drug Deliv Sci Technol. 2021;63:102460. doi: https://doi.org/10.1016/j.jddst.2021.102460
11. Shah H, Nair AB, Shah J, Jacob S, Bharadia P, Haroun M. Proniosomal vesicles as an effective strategy to optimize naproxen transdermal delivery. J Drug Deliv Sci Technol. 2021;63:102479. doi: https://doi.org/10.1016/J.JDDST.2021.102479
12. Nemr AA, El-mahrouk GM, Badie HA. Development and evaluation of proniosomes to enhance the transdermal delivery of cilostazole and to ensure the safety of its application. Drug Dev Ind Pharm. 2021;47:403–15. doi: https://doi.org/10.1080/03639045.2021.1890111
13. Shah J, Nair AB, Shah H, Jacob S, Shehata TM, Aly Morsy M. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel. Asian J Pharm Sci. 2020;15:786–96. doi: https://doi.org/10.1016/j.ajps.2019.05.001
14. Oliveira ALS, Valente D, Moreira HR, Pintado M, Costa P. Effect of squalane-based emulsion on polyphenols skin penetration: ex vivo skin study. Colloids Surf B Biointerfaces 2022;218:112779. doi: https://doi.org/10.1016/J.COLSURFB.2022.112779
15. Lasó E, Drasar PB, Khripach VA. Topical administration of terpenes encapsulated in nanostructured lipid-based systems. Molecules 2020;25:5758. doi: https://doi.org/10.3390/MOLECULES25235758
16. Dash DK, Panda DS, Pattnaik S, Vaiswade R, Gupta G. Enhancing transdermal drug delivery: formulation and evaluation of simvastatin-loaded invasomes in carbopol gel for improved permeability and prolonged release. Braz J Pharm Sci. 2025;61:e23976. doi: https://doi.org/10.1590/S2175-97902025E23976
17. Baiomy AM, Younis MK, Kharshoum RM, Alsalhi A, Zaki RM, Afzal O, et al. Optimized delivery of Enalapril Maleate via polymeric Invasomal in-situ gel for glaucoma treatment: in vitro, in vivo, and histological studies. J Drug Deliv Sci Technol. 2025;106:106685. doi: https://doi.org/10.1016/J.JDDST.2025.106685
18. Teaima MH, Eltabeeb MA, El-Nabarawi MA, Abdellatif MM. Utilization of propranolol hydrochloride mucoadhesive invasomes as a locally acting contraceptive: in-vitro, ex-vivo, and in-vivo evaluation. Drug Deliv. 2022;29:2549–60. doi: https://doi.org/10.1080/10717544.2022.2100514
19. Koyama Y, Bando H, Yamashita F, Takakura Y, Sezaki H, Hashida M. Comparative analysis of percutaneous absorption enhancement by d-Limonene and oleic acid based on a skin diffusion model. Pharm Res. 1994;11:377–83. doi: https://doi.org/10.1023/A:1018904802566
20. Chen J, Jiang QD, Chai YP, Zhang H, Peng P, Yang XX. Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules 2016;21:1709. doi: https://doi.org/10.3390/MOLECULES21121709
21. Schafer N, Balwierz R, Biernat P, Och?dzan-Siod?ak W, Lipok J.Natural ongredients of transdermal drug delivery systems as permeation enhancers of active substances through the stratum corneum. Mol Pharm. 2023;20:3278. doi: https://doi.org/10.1021/ACS.MOLPHARMACEUT.3C00126
22. Sakdiset P, Arce FJ, See GL, Sawatdee S, Sae Yoon A. Preparation and characterization of lidocaine HCl-loaded proniosome gels with skin penetration enhancers. J Drug Deliv Sci Technol. 2023;86:104639. doi: https://doi.org/10.1016/j.jddst.2023.104639
23. Schlich M, Lai F, Pireddu R, Pini E, Ailuno G, Fadda AM, et al. Resveratrol proniosomes as a convenient nanoingredient for functional food. Food Chem. 2020;310:125950. doi: https://doi.org/10.1016/j.foodchem.2019.125950
24. Tareen FK, Shah KU, Ahmad N, Asim.ur.Rehman N, Shah SU, Ullah N. Proniosomes as a carrier system for transdermal delivery of clozapine. Drug Dev Ind Pharm. 2020;46:946–54. doi: https://doi.org/10.1080/03639045.2020.1764020
25. El-Enin ASMA, Khalifa MKA, Dawaba AM, Dawaba HM. Proniosomal gel-mediated topical delivery of fluconazole: development, in vitro characterization, and microbiological evaluation. J Adv Pharm Technol Res. 2019;10:20. doi: https://doi.org/10.4103/JAPTR.JAPTR_332_18
26. Gentili A, Caretti F. Analysis of vitamins by liquid chromatography. In: Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D, editors. Liquid chromatography: applications. Amsterdam, Netherlands: Elsevier. 2013. pp. 477–517. doi: https://doi.org/10.1016/B978-0-12-415806-1.00018-
27. Ong TS, Chu CC, Tan CP, Nyam KL. Preparation and evaluation pumpkin seed oil-based vitamin E cream formulations for topical application. J Oleo Sci. 2020;69:297–306. doi: https://doi.org/10.5650/JOS.ESS19250
28. Liu J, Han Y, Chen J, Zhang Z, Miao S, Zheng B, et al. MCT/LCT mixed oil phase enhances the rheological property and freeze-thawing stability of emulsion. Foods 2022;11:712. doi: https://doi.org/10.3390/FOODS11050712
29. Ali H, El-Sayed K, Sylvester PW, Nazzal S. Molecular interaction and localization of tocotrienol-rich fraction (TRF) within the matrices of lipid nanoparticles: evidence studies by differential scanning calorimetry (DSC) and proton nuclear magnetic resonance spectroscopy (1H NMR). Colloids Surf B Biointerfaces 2010;77:286– 97. doi: https://doi.org/10.1016/J.COLSURFB.2010.02.003
30. Chu CC, Hasan ZAA, Tan CP, Nyam KL. In vitro safety evaluation of sunscreen formulation from nanostructured lipid carriers using human cells and skin model. Toxicol In Vitro 2022;84:105431. doi: https://doi.org/10.1016/J.TIV.2022.105431
31. Shah H, Nair AB, Shah J, Bharadia P, Al-Dhubiab BE. Proniosomal gel for transdermal delivery of lornoxicam: optimization using factorial design and in vivo evaluation in rats. Daru 2019;27:59–70. doi: https://doi.org/10.1007/S40199-019-00242-X
32. Ortiz AC, Yañez O, Salas-Huenuleo E, Morales JO. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation. Pharmaceutics 2021;13:531. doi: https://doi.org/10.3390/PHARMACEUTICS13040531/S1
33. Akombaetwa N, Ilangala AB, Thom L, Memvanga PB, Witika BA, Buya AB. Current advances in lipid nanosystems intended for topical and transdermal drug delivery applications. Pharmaceutics 2023;15:656. doi: https://doi.org/10.3390/PHARMACEUTICS15020656
34. Spanova M, Zweytick D, Lohner K, Klug L, Leitner E, Hermetter A, et al. Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2012;1821:647. doi: https://doi.org/10.1016/J.BBALIP.2012.01.015
35. Chiu CS, Huang PH, Chan YJ, Li PH, Lu WC. d-limonene nanoemulsion as skin permeation enhancer for curcumin prepared by ultrasonic emulsification. J Agric Food Res. 2024;15:100932. doi: https://doi.org/10.1016/J.JAFR.2023.100932
36. Albash R, Al-Mahallawi AM, Hassan M, Alaa-Eldin AA. Development and optimization of terpene-enriched vesicles (terpesomes) for effective ocular delivery of fenticonazole nitrate: in vitro characterization and in vivo assessment. Int J Nanomed. 2021;16:609–21. doi: https://doi.org/10.2147/IJN.S274290
37. El-Laithy HM, Shoukry O, Mahran LG. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm. 2011;77:43–55. doi: https://doi.org/10.1016/J.EJPB.2010.10.011
38. Manosroi A, Jantrawut P, Manosroi J.Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int J Pharm. 2008;360:156–63. doi: https://doi.org/10.1016/J.IJPHARM.2008.04.033
39. Schreier H, Bouwstra J.Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Contr Release 1994;30:1–15. doi: https://doi.org/10.1016/0168-3659(94)90039-6
40. Lin H, Li Z, Sun Y, Zhang Y, Wang S, Zhang Q, et al. d-Limonene: promising and sustainable natural bioactive compound. Appl Sci. 2024;14:4605. doi: https://doi.org/10.3390/APP14114605
41. Hauß T, Dante S, Dencher NA, Haines TH. Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochim Biophys Acta - Bioenerg. 2002;1556:149–54. doi: https://doi.org/10.1016/S0005-2728(02)00346-8
42. Anandakumar P, Kamaraj S, Vanitha MK. d-Limonene: a multifunctional compound with potent therapeutic effects. J Food Biochem. 2021;45:e13566. doi: https://doi.org/10.1111/JFBC.13566
43. Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 2009;14:540. doi: https://doi.org/10.3390/MOLECULES14010540
44. Zengin H, Baysal AH. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014;19:17773–98. doi: https://doi.org/10.3390/MOLECULES191117773
45. Baccouri B, Rajhi I, Baccouri B, Rajhi I. Potential antioxidant activity of terpenes. 2021. doi: https://doi.org/10.5772/INTECHOPEN.96638
46. Machado ND, Gutiérrez G, Matos M, Fernández MA. Preservation of the antioxidant capacity of resveratrol via encapsulation in niosomes. Foods 2021;10:988. doi: https://doi.org/10.3390/FOODS10050988
47. Rodriguez R, Redman R. Balancing the generation and elimination of reactive oxygen species. Proc Natl Acad Sci U S A. 2005;102:3175–6. doi: https://doi.org/10.1073/PNAS.0500367102/ASSET/C9623043-0653-4B48-8850-9A337CF067BB/ASSETS/GRAPHIC/ZPQ0110576760001.JPEG
48. Setiadi, Hidayah N. The effect of papain enzyme dosage on the modification of egg-yolk lecithin emulsifier product through enzymatic hydrolysis reaction. Int J Technol. 2018;9:380–9. doi: https://doi.org/10.14716/IJTECH.V9I2.1073
49. Gorman M. The evidence from infrared spectroscopy for hydrogen bonding: a case history of the correlation and interpretation of data. J Chem Educ. 1957;34:304–6. doi: https://doi.org/10.1021/ED034P304
50. Xu Q, Wu Y, Saito H, Ofuchi Y, Setoyama H, Furuishi T, et al. Promoting activity of terpenes on skin permeation of famotidine. Chem Pharm Bull (Tokyo). 2023;71:111–9. doi: https://doi.org/10.1248/CPB.C22-00568
51. Shruthi PA, Pushpadass HA, Franklin MEE, Battula SN, Laxmana Naik N. Resveratrol-loaded proniosomes: formulation, characterization and fortification. LWT. 2020;134. doi: https://doi.org/10.1016/j.lwt.2020.110127
52. Savic SM, Cekic ND, Savic SR, Ilic TM, Savic SD. “All-natural” anti-wrinkle emulsion serum with Acmella oleracea extract: a design of experiments (DoE) formulation approach, rheology and in vivo skin performance/efficacy evaluation. Int J Cosmet Sci. 2021;43:530–46. doi: https://doi.org/10.1111/ICS.12726
53. El Maghraby GM, Ahmed AA, Osman MA. Penetration enhancers in proniosomes as a new strategy for enhanced transdermal drug delivery. Saudi Pharm J.2015;23:67–74. doi: https://doi.org/10.1016/J.JSPS.2014.05.001
54. El Maghraby GMM, Williams AC, Barry BW. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int J Pharm. 2004;276:143–61. doi: https://doi.org/10.1016/J.IJPHARM.2004.02.024
55. Cekic ND, Savic SM, Savic SD. Dynamic-mechanical thermoanalysis test: a rapid alternative for accelerated freeze-thaw stability evaluation of W/O emulsions. Drug Dev Ind Pharm. 2019;45:1896– 906. doi: https://doi.org/10.1080/03639045.2019.1672718
56. Mezger T. The rheology handbook - for users of rotational and oscillatory rheometers. Appl Rheol. 2002;12:232. doi: https://doi.org/10.1515/ARH-2002-0029
57. Pippa N, Pispas S, Demetzos C. The metastable phases as modulators of biophysical behavior of liposomal membranes: the role of biomolecular sculpture of polymeric guest. J Therm Anal Calorim. 2015;120:937–45. doi: https://doi.org/10.1007/S10973-014-4116-5
Year
Month