Inflammation is a complex biological response triggered by harmful stimuli and characterized by elevated levels of pro-inflammatory cytokines such as interleukin (IL)-6, IL-12, and tumor necrosis factor (TNF)-α. Although steroidal and non-steroidal anti-inflammatory drugs are commonly used, their side effects highlight the need for safer alternatives. This study evaluates the anti-inflammatory activity of the ethanol extract of Theonella sp. collected from Southeast Sulawesi, Indonesia, through in vitro, in vivo, and in silico approaches. To our knowledge, this is the first report evaluating the cytokine-modulating effects of Theonella sp. from this region. In vitro study was done using human red blood cell membrane stability and protein denaturation assays, whereas the in vivo study was done using carrageenan-induced paw edema in male Wistar rats. The edema volume was measured using a plethysmometer, and the levels of cytokines IL-6, IL-12, and TNF-α were measured using enzyme-linked immunosorbent assay, and its molecular docking. The extract stabilized cell membranes, inhibited protein denaturation, and significantly reduced paw edema and cytokine levels, indicating anti-inflammatory potential. Preliminary phytochemical screening identified alkaloids (peptides) and steroids. These findings highlight Theonella sp. as a promising source of natural anti-inflammatory agents.
Fristiohady A, Sahidin I, Mahmud T, Purnama LOMJ, Asasutjarit R, Malik F, Yodha AWM, Haruna LA, Arfan A, Wahyuni W. Anti-inflammatory potential of Indonesian marine sponge Theonella sp.: Mechanisms via TNF-α, IL-6, and IL-12 inhibition. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.v15.i12.9
1. Stone WL, Basit H, Zubair M, Burns, B. Pathology, inflammation. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534820/
2. Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017;31(4):1273–88. doi: https://doi.org/10.1096/fj.201601222R
3. Soares CLR, Wilairatana P, Silva LR, Moreira PS, Vilar Barbosa NMM, da Silva PR, et al. Biochemical aspects of the inflammatory process: a narrative review. Biomed Pharmacother. 2023;168:115764. doi: https://doi.org/10.1016/j.biopha.2023.115764
4. Bulté D, Rigamonti C, Romano A, Mortellaro A. Inflammasomes: mechanisms of action and involvement in human diseases. Cells 2023;12(13):1766. doi: https://doi.org/10.3390/cells12131766
5. Lee HM, Lee HJ, Chang JE. Inflammatory cytokine: an attractive target for cancer treatment. Biomedicines 2022;10(9):2116. doi: https://doi.org/10.3390/biomedicines10092116
6. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8(Suppl 2):S3. doi: https://doi.org/10.1186/ar1917
7. Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984–1010. doi: https://doi.org/10.1016/j.jaci.2016.06.033
8. Qiu N, Wang G, Wang J, Zhou Q, Guo M, Wang Y, et al. Tumor-associated macrophage and tumor-cell dually transfecting polyplexes for efficient interleukin-12 cancer gene therapy. Adv Mater. 2020;33(2):e2006189. doi: https://doi.org/10.1002/adma.202006189
9. Balasubbramanian D, Goodlett BL, Mitchell BM. Is IL-12 pro-inflammatory or anti-inflammatory? Depends on the blood pressure. Cardiovasc Res. 2019;115(6):998–9. doi: https://doi.org/10.1093/cvr/cvz028
10. Alzamil H. Elevated serum TNF-α is related to obesity in type 2 diabetes mellitus and is associated with glycemic control and insulin resistance. J Obes. 2020;2020:5076858. doi: https://doi.org/10.1155/2020/5076858
11. Sethi G, Sung B, Aggarwal BB. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13:5094–107. doi: https://doi.org/10.2741/3066
12. El-Shitany NA, Shaala LA, Abbas AT, Abdel-Dayem UA, Azhar EI, Ali SS, et al. Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the red sea marine sponge Xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS One. 2015;10(9):e0138917. doi: https://doi.org/10.1371/journal.pone.0138917
13. Festa C, Marino SD, Sepe V, Monti MC, Luciano P, D’Auria MV, et al. Perthamides C and D, two new potent anti-inflammatory cyclopeptides from a Solomon Lithistid sponge Theonella swinhoei. Tetrahedron 2009;65:10424–9. doi: https://doi.org/10.1016/j.tet.2009.10.026
14. Vilasi A, Monti MC, Tosco A, De Marino S, Margarucci L, Riccio R, et al. Differential in gel electrophoresis (DIGE) comparative proteomic analysis of macrophages cell cultures in response to perthamide C treatment. Mar Drugs. 2013;11(4):1288–99. doi: https://doi.org/10.3390/md11041288
15. Margarucci L, Monti MC, Mencarelli A, Cassiano C, Fiorucci S, Riccio R, et al. Heat shock proteins as key biological targets of the marine natural cyclopeptide perthamide C. Mol Biosyst. 2012;8(5):1412–7. doi: https://doi.org/10.1039/c2mb05507d
16. Festa C, De Marino S, Sepe V, D’Auria MV, Bifulco G, Débitus C, et al. Solomonamides A and B, new anti-inflammatory peptides from Theonella swinhoei. Org Lett. 2011;13(6):1532–5. doi: https://doi.org/10.1021/ol200221n
17. Festa C, De Marino S, D’Auria MV, Bifulco G, Renga B, Fiorucci S, et al. Solomonsterols A and B from Theonella swinhoei. The first example of C-24 and C-23 sulfated sterols from a marine source endowed with a PXR agonistic activity. J Med Chem. 2011;54(1):401–5. doi: https://doi.org/10.1021/jm100968b
18. Sepe V, Ummarino R, D’Auria MV, Mencarelli A, D’Amore C, Renga B, et al. Total synthesis and pharmacological characterization of solomonsterol A, a potent marine pregnane-X-receptor agonist endowed with anti-inflammatory activity. J Med Chem. 2011;54(13):4590–9. doi: https://doi.org/10.1021/jm200241s
19. Kogawa M, Miyaoka R, Hemmerling F, Ando M, Yura K, Ide K, et al. Single-cell metabolite detection and genomics reveals uncultivated talented producer. PNAS Nexus. 2022;1(1):pgab007. doi: https://doi.org/10.1093/pnasnexus/pgab007
20. Hamsidi R, Wahyuni W, Sahidin I, Apriyani E, Harsono H, Azizah NA, et al. Suppression of proinflammatory cytokines by Etlingera alba (A.D.) poulsen rhizome extract and its antibacterial properties. Adv Pharmacol Pharm Sci. 2021;2021:5570073. doi: https://doi.org/10.1155/2021/5570073
21. Raal A, Meos A, Hinrikus T, Heinämäki J, Rom?ne E, Gudien? V, et al. Dragendorff’s reagent: historical perspectives and current status of a versatile reagent introduced over 150 years ago at the University of Dorpat, Tartu, Estonia. Pharmazie 2020;75(7):299–306. doi: https://doi.org/10.1691/ph.2020.0438
22. Nath MC, Chakravorty MK, Chowdhury SR. Liebermann-Burchard reaction for steroids. Nature 1946;157:103. doi: https://doi.org/10.1038/157103b0
23. Saleem TK, Azeem AK, Dilip C, Sankar C, Prasanth NV, Duraisami R. Anti-inflammatory activity of the leaf extacts of Gendarussa vulgaris Nees. Asian Pac J Trop Biomed. 2011;1(2):147–9. doi: https://doi.org/10.1016/S2221-1691(11)60014-2
24. Dharmadeva S, Galgamuwa LS, Prasadinie C, Kumarasinghe N. In vitro anti-inflammatory activity of Ficus racemose L. bark using albumin denaturation method. Ayu 2018;39(4):239–42. doi: https://doi.org/10.4103/ayu.AYU_27_18
25. Fristiohady A, Mahmud T, Maming JT, Arfan A, Jabbar A, Yusuf MI, et al. Safflower extract (Carthamus tinctorius Linn.) suppresses proinflammatory cytokines level in rheumatoid arthritis mice model stimulated by complete Freund’s adjuvants. J Appl Pharm Sci. 2024;5(2):189–99. doi: http://doi.org/10.7324/JAPS.2024.189008
26. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244–58. doi: https://doi.org/10.1093/ilar.43.4.244
27. National Research Council (US) Committee. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: National Academies Press; 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/
28. OECD. Test No. 425: acute oral toxicity: up-and-down procedure. OECD guidelines for the testing of chemicals, section 4. Paris, France: OECD Publishing; 2008. doi: https://doi.org/10.1787/9789264071049-en
29. Bustos-Salgado P, Rodríguez-Lagunas MJ, Domínguez-Villegas V, Andrade-Carrera B, Calpena-Campmany A, Garduño- Ramírez ML. Ex vivo and in vivo anti-inflammatory evaluations of modulated flavanones solutions. In: Proceedings of the 4th International Electronic Conference on Medicinal Chemistry, 2020, MDPI, Basel, Switzerland. p. 60(1). doi: https://doi.org/10.3390/IECP2020-08657
30. Chaudhary RK, Karoli SS, Dwivedi PSR, Bhandari R. Anti-diabetic potential of Corn silk (Stigma maydis): an in-silico approach. J Diabetes Metab Disord. 2022;21(1):445–54. doi: https://doi.org/10.1007/s40200-022-00992-7
31. Arba M, Ningsih AS, Bande LOS, Wahyudi ST, Bui-Linh C, Wu C, et al. Computational insights into the binding of pimodivir to the mutated PB2 subunit of the influenza A virus. Mol Simul. 2023;49(10):1031–43. doi: https://doi.org/10.1080/08927022.2023.2210690
32. Malik A, Naz A, Ahmad S, Hafeez M, Awan FM, Jafar TH, et al. Inhibitory potential of phytochemicals on interleukin-6-mediated T-cell reduction in COVID-19 patients: a computational approach. Bioinform Biol Insights. 2021;15:11779322211021430. doi: https://doi.org/10.1177/11779322211021430
33. Festa C, De Marino S, Zampella A, Fiorucci S. Theonella: a treasure trove of structurally unique and biologically active sterols. Mar Drugs. 2023;21(5):291. doi: https://doi.org/10.3390/md21050291
34. Khan MA, Khan H, Tariq SA, Pervez S. In vitro attenuation of thermal-induced protein denaturation by aerial parts of Artemisia scoparia. J Evid Based Complementary Altern Med. 2015;20(1):9– 12. doi: https://doi.org/10.1177/2156587214548458
35. Liu W, Chen X, Li H, Zhang J, An J, Liu X. Anti-inflammatory function of plant-derived bioactive peptides: a review. Foods 2022;11(15):2361. doi: https://doi.org/10.3390/foods11152361
36. Zhang K, Tang Y, Chen Q, Liu Y. The screening of therapeutic peptides for anti-inflammation through phage display technology. Int J Mol Sci. 2022;23(15): 8554. doi: https://doi.org/10.3390/ijms23158554
37. Mencarelli A, D’Amore C, Renga B, Cipriani S, Carino A, Sepe V, et al. Solomonsterol A, a marine pregnane-X-receptor agonist, attenuates inflammation and immune dysfunction in a mouse model of arthritis. Mar Drugs. 2013;12(1):36–53. doi: https://doi.org/10.3390/md12010036
38. Pathak RK, Kim WI, Kim JM. Targeting the PEDV 3CL protease for identification of small molecule inhibitors: an insight from virtual screening, ADMET prediction, molecular dynamics, free energy landscape, and binding energy calculations. J Biol Eng. 2023;17(1):29. doi: https://doi.org/10.1186/s13036-023-00342-y
39. Sabdono A, Radjasa OK. Microbial symbionts in marine sponges: marine natural product factory. J Coast Dev. 2008;11(2):57–61. Available from: https://ejournal.undip.ac.id/index.php/coastdev/article/view/1221
Year
Month