The study investigates the effects of flaxseed extract on high-calorie, high-fat, and fructose-fed metabolic syndrome parameters in male Wistar rats without diet reversal, encouraged by increasing western diet-induced obesity-associated metabolic syndrome incidence and anti-hyperlipidemic effects of flaxseeds. Fifty-six male Wistar rats were divided into seven groups (n = 8/group); the first group (normal controls) received a normal diet, and the second group (flaxseed controls) received a normal diet and flaxseed extract (1.0 g/kg body weight/day) orally for 16 weeks. The third group (metabolic syndrome controls) received a high-calorie, high-fat diet and fructose for 16 weeks, with induction observed at 8 weeks. The fourth and fifth groups received a high-calorie, high-fat diet and fructose for 16 weeks with flaxseed extract initiated after 8 weeks with doses of 0.5 and 1.0 g/kg body weight/ day (post-exposure groups). The sixth and seventh groups received a high-calorie, high-fat diet and fructose with flaxseed extract doses of 0.5 and 1.0 g/kg body weight/day for 16 weeks (co-exposure groups). High-dose flaxseed extract reduces body weight, blood glucose, cholesterol, triglycerides (TAGs), uric acid, and total oxidant status while increasing high-density lipoprotein. Liver histopathology indicates that high-dose flaxseed extract co-exposure protects against fructose-induced hepatic steatosis. Thus, without dietary alterations, flaxseeds lower blood sugar, cholesterol, TAG and improve hepatic steatosis, attenuating metabolic syndrome markers induced by high-calorie, high-fat, and fructose diets.
Dutta B, Raghavendra AP, Tripathy A, Manel DN, Umakanth S, Kamath SU. Evaluation of attenuative potential of flaxseeds in high-calorie, high-fat, and fructose-induced metabolic syndrome indicators in Wistar rats without dietary reversal. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.219097
1. Belete R, Ataro Z, Abdu A, Sheleme M. Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):25. doi: https://doi.org/10.1186/s13098-021-00641-8
2. Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: a systematic review and modelling analysis. Lancet Child Adolesc Health. 2022;6(3):158–70. doi: https://doi.org/10.1016/s2352- 4642(21)00374-6
3. Jayant SS, Gupta R, Rastogi A, Sachdeva N, Ram S, Dutta P, et al. Incidence and predictors of metabolic syndrome in Asian-Indians: a 10-year population-based prospective cohort study. Int J Diabetes Dev Ctries. 2023;43(6):1–7. doi: http://dx.doi.org/10.1007/s13410-023- 01169-5
4. Krishnamoorthy Y, Rajaa S, Murali S, Rehman T, Sahoo J, Kar SS. Prevalence of metabolic syndrome among adult population in India: a systematic review and meta-analysis. PLoS One. 2020;15(10):e0240971. doi: https://doi.org/10.1371/journal.pone.0240971
5. Krishnamoorthy Y, Rajaa S, Murali S, Sahoo J, Kar SS. Association between anthropometric risk factors and metabolic syndrome among adults in India: a systematic review and meta-analysis of observational studies. Prev Chronic Dis. 2022;19:210231. doi: https://doi.org/10.5888/pcd19.210231
6. Genser L, Aguanno D, Soula HA, Dong L, Trystram L, Assmann K, et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol. 2018;246(2):217–30. doi: https://doi.org/10.1002/path.5134
7. Lancaster KJ.Current intake and demographic disparities in the association of fructose-rich foods and metabolic syndrome. JAMA Netw Open. 2020;3(7):e2010224. doi: https://doi.org/10.1001/jamanetworkopen.2020.10224
8. Giussani M, Lieti G, Orlando A, Parati G, Genovesi S. Fructose intake, hypertension and cardiometabolic risk factors in children and adolescents: from pathophysiology to clinical aspects. A narrative review. Front Med. 2022;9:792949. doi: https://doi.org/10.3389/fmed.2022.792949
9. Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8. doi: https://doi.org/10.1016/j.cytogfr.2018.01.004
10. Herman MA, Birnbaum MJ.Molecular aspects of fructose metabolism and metabolic disease. Cell Metab. 2021;33(12):2329– 54. doi: https://doi.org/10.1016/j.cmet.2021.09.010
11. Febbraio MA, Karin M. “Sweet death”: fructose as a metabolic toxin that targets the gut-liver axis. Cell Metab. 2021;33(12):2316–28. doi: https://doi.org/10.1016/j.cmet.2021.09.004
12. Levelt E, Pavlides M, Banerjee R, Mahmod M, Kelly C, Sellwood J, et al. Ectopic and visceral fat deposition in lean and obese patients with type 2 diabetes. J Am Coll Cardiol. 2016;68(1):53–63. doi: https://doi.org/10.1016/j.jacc.2016.03.597
13. Feng T, Zhao X, Gu P, Yang W, Wang C, Guo Q, et al. Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2. Nat Commun. 2022;13(1):5208. doi: https://doi.org/10.1038/s41467-022-32871-3
14. Hammerschmidt P, Brüning JC. Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci. 2022;79(8):395. doi: https://doi.org/10.1007/s00018-022-04401-3
15. James DE, Stöckli J, Birnbaum MJ.The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol. 2021;22(11):751–71. doi: https://doi.org/10.1038/s41580-021-00390-6
16. Menikdiwela KR, Ramalingam L, Allen L, Scoggin S, Kalupahana NS, Moustaid-Moussa N. Angiotensin II increases endoplasmic reticulum stress in adipose tissue and adipocytes. Sci Rep. 2019;9(1):8481. doi: https://doi.org/10.1038/s41598-019-44834-8
17. Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. 2020;11(9):802. doi: https://doi.org/10.1038/s41419-020-03003-w
18. Kazankov K, Jørgensen SMD, Thomsen KL, Møller HJ, Vilstrup H, George J, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16(3):145–59. doi: https://doi.org/10.1038/s41575-018-0082-x
19. Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: a review. Trends Food Sci Technol. 2014;38(1):5–20. doi: https://doi.org/10.1016/j.tifs.2014.03.011
20. Johnsson P, Kamal-Eldin A, Lundgren LN, Åman P. HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. J Agric Food Chem. 2000;48(11):5216–9. doi: https://doi.org/10.1021/jf0005871
21. Mueed A, Shibli S, Korma SA, Madjirebaye P, Esatbeyoglu T, Deng Z. Flaxseed bioactive compounds: chemical composition, functional properties, food applications and health benefits-related gut microbes. Foods. 2022;11(20):3307. doi: https://doi.org/10.3390/foods11203307
22. Paynel F, Pavlov A, Ancelin G, Rihouey C, Picton L, Lebrun L, et al. Polysaccharide hydrolases are released with mucilages after water hydration of flax seeds. Plant Physiol Biochem. 2013;62:54–62. doi: https://doi.org/10.1016/j.plaphy.2012.10.009
23. Matsumoto T, Shishido A, Morita H, Itokawa H, Takeya K. Conformational analysis of cyclolinopeptides A and B. Tetrahedron. 2002;58(25):5135–40. doi: https://doi.org/10.1016/s0040-4020(02)00476-3
24. Cui W, Mazza G, Oomah BD, Biliaderis CG. Optimization of an aqueous extraction process for flaxseed gum by response surface methodology. LWT - Food Sci Technol. 1994;27(4):363–9. doi: https://doi.org/10.1006/fstl.1994.1074
25. Shahidi S, Mahmoodi MS, Komaki A, Sadeghian R. The comparison of omega-3 and flaxseed oil on serum lipids and lipoproteins in hyperlipidemic male rats. Heliyon. 2022;8(6):e09662. doi: https://doi.org/10.1016/j.heliyon.2022.e09662
26. Draganescu D, Andritoiu C, Hritcu D, Dodi G, Popa MI. Flaxseed lignans and polyphenols enhanced activity in streptozotocin-induced diabetic rats. Biology (Basel). 2021;10(1):43. doi: https://doi.org/10.3390/biology10010043
27. Naik HS, Srilatha Ch, Sujatha K, Sreedevi B, Prasad TNVK V. Supplementation of whole grain flaxseeds (Linum usitatissimum) along with high cholesterol diet and its effect on hyperlipidemia and initiated atherosclerosis in Wistar albino male rats. Vet World. 2018;11(10):1433–9. doi: https://doi.org/10.14202/vetworld.2018.1433-1439
28. Prasad K, Khan AS, Shoker M. Flaxseed and its components in treatment of hyperlipidemia and cardiovascular disease. Int J Angiol. 2020;29(4):216–22. doi: https://doi.org/10.1055/s-0040-1709129
29. Toulabi T, Yarahmadi M, Goudarzi F, Ebrahimzadeh F, Momenizadeh A, Yarahmadi S. Effects of flaxseed on blood pressure, body mass index, and total cholesterol in hypertensive patients: a randomized clinical trial. Explore. 2022;18(4):438–45. doi: https://doi.org/10.1016/j.explore.2021.05.003
30. Prasad K. Secoisolariciresinol diglucoside (SDG) isolated from flaxseed, an alternative to ACE inhibitors in the treatment of hypertension. Int J Angiol. 2013;22(4):235–8. doi: https://doi.org/10.1055/s-0033-1351687
31. Rodriguez-Leyva D, Weighell W, Edel AL, LaVallee R, Dibrov E, Pinneker R, et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension. 2013;62(6):1081–9. doi: https://doi.org/10.1161/hypertensionaha.113.02094
32. Dong S, Bai W, Chen J, Zhang L, Sheng W, Feng R. Secoisolariciresinol diglucoside regulates adipose tissue metabolic disorder in obese mice induced by a western diet. J Food Qual. 2021;2021:1–10. doi: https://doi.org/10.1155/2021/5580772
33. Fukumitsu S, Aida K, Ueno N, Ozawa S, Takahashi Y, Kobori M. Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice. Br J Nutr. 2008;100(3):669–76. doi: https://doi.org/10.1017/s0007114508911570
34. Shafie SR, Wanyonyi S, Panchal SK, Brown L. Linseed components are more effective than whole linseed in reversing diet-induced metabolic syndrome in rats. Nutrients. 2019;11(7):1677. doi: https://doi.org/10.3390/nu11071677
35. Luo J, Li Y, Mai Y, Gao L, Ou S, Wang Y, et al. Flaxseed gum reduces body weight by regulating gut microbiota. J Funct Foods. 2018;47:136–42. doi: https://doi.org/10.1016/j.jff.2018.05.042
36. Pusceddu MM, El Aidy S, Crispie F, O’Sullivan O, Cotter P, Stanton C, et al. N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota. PLoS One. 2015;10(10):e0139721. doi: https://doi.org/10.1371/journal.pone.0139721
37. Wall R, Ross RP, Shanahan F, O’Mahony L, Kiely B, Quigley E, et al. Impact of administered bifidobacterium on murine host fatty acid composition. Lipids. 2010;45(5):429–36. doi: https://doi.org/10.1007/s11745-010-3410-7
38. Yang C, Xu Z, Deng Q, Huang Q, Wang X, Huang F. Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice. Food Res Int. 2020;131:108994. doi: https://doi.org/10.1016/j.foodres.2020.108994
39. Ogawa A, Kadooka Y, Kato K, Shirouchi B, Sato M. Lactobacillus gasseri SBT2055 reduces postprandial and fasting serum non-esterified fatty acid levels in Japanese hypertriacylglycerolemic subjects. Lipids Health Dis. 2014;13:1–8. doi: https://doi.org/10.1186/1476-511X-13-36
40. Drissi F, Raoult D, Merhej V. Metabolic role of lactobacilli in weight modification in humans and animals. Microb Pathog. 2017;106:182–94. doi: https://doi.org/10.1016/j.micpath.2016.03.006
41. Chung H, Yu JG, Lee I, Liu M, Shen Y, Sharma SP, et al. Intestinal removal of free fatty acids from hosts by Lactobacilli for the treatment of obesity. FEBS Open Bio. 2016;6(1):64–76. doi: https://doi.org/10.1002/2211-5463.12024
42. Pittler MH, Ernst E. Complementary therapies for reducing body weight: a systematic review. Int J Obes. 2005;29(9):1030–8. doi: https://doi.org/10.1038/sj.ijo.0803008
43. Gao R, Zhu C, Li H, Yin M, Pan C, Huang L, et al. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity. 2018;26(2):351–61. doi: https://doi.org/10.1002/oby.22088
44. Hutchins AM, Brown BD, Cunnane SC, Domitrovich SG, Adams ER, Bobowiec CE. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. Nutr Res. 2013;33(5):367–75. doi: https://doi.org/10.1016/j.nutres.2013.02.012
45. Edel AL, Rodriguez-Leyva D, Maddaford TG, Caligiuri SPB, Austria JA, Weighell W, et al. Dietary flaxseed independently lowers circulating cholesterol and lowers it beyond the effects of cholesterol-lowering medications alone in patients with peripheral artery disease. J Nutr. 2015;145(4):749–57. doi: https://doi.org/10.3945/jn.114.204594
46. Rhee Y, Brunt A. Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design. Nutr J.2011;10:1–7. doi: https://doi.org/10.1186/1475-2891-10-44
47. Machado AM, de Paula H, Cardoso LD, Costa NMB. Effects of brown and golden flaxseed on the lipid profile, glycemia, inflammatory biomarkers, blood pressure and body composition in overweight adolescents. Nutrition. 2015;31(1):90–6. doi: https://doi.org/10.1016/j.nut.2014.05.002
48. Yari Z, Rahimlou M, Eslamparast T, Ebrahimi-Daryani N, Poustchi H, Hekmatdoost A. Flaxseed supplementation in non-alcoholic fatty liver disease: a pilot randomized, open labeled, controlled study. Int J Food Sci Nutr. 2016;67(4):461–9. doi: https://doi.org/10.3109/096 37486.2016.1161011
49. Torkan M, Hassan Entezari M, Siavash M. Effect of flaxseed on blood lipid level in hyperlipidemic patients. Rev Recent Clin Trials. 2015;10(1):61–7. doi: https://doi.org/10.2174/157488711066615012 1154334
50. Saxena S, Katare C. Evaluation of flaxseed formulation as a potential therapeutic agent in mitigation of dyslipidemia. Biomed J.2014;37(6):386–90. doi: https://doi.org/10.4103/2319-4170.126447
51. Wu H, Pan A, Yu Z, Qi Q, Lu L, Zhang G, et al. Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. J Nutr. 2010;140(11):1937–42. doi: https://doi.org/10.3945/jn.110.126300
52. Wong H, Chahal N, Manlhiot C, Niedra E, McCrindle BW. Flaxseed in pediatric hyperlipidemia: a placebo-controlled, blinded, randomized clinical trial of dietary flaxseed supplementation for children and adolescents with hypercholesterolemia. JAMA Pediatr. 2013;167(8): 708–13. doi: https://doi.org/10.1001/jamapediatrics.2013.1442
53. Zhang W, Wang X, Liu Y, Tian H, Flickinger B, Empie MW, et al. Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects. Br J Nutr. 2008;99(6):1301–9. doi: https://doi.org/10.1017/S0007114507871649
54. Abdelkarem HM, Fadda LH. Flaxseed and quercetin improve anti-inflammatory cytokine level and insulin sensitivity in animal model of metabolic syndrome, the fructose-fed rats. Arab J Chem. 2017;10:S3015–20. doi: https://doi.org/10.1016/j.arabjc.2013.11.042
55. Kapuriya PB, Sadariya KA, Bhavsar SK, Thaker AM. Antidiabetic activity of aqueous extracts of Linum usitatissimum in streptozotocin induced diabetic rats. Pharma Innov J.2018;7(7):149–54.
56. Tharwat S, Shaheen D, El-Megeid AA, Salam R, Rashed L, El- Hamid S, et al. Effectiveness of adding flaxseed to type 2 diabetic patient’s regimen. Endocrinol Metab Syndr. 2017;6(3):267–71. doi: https://doi.org/10.4172/2161-1017.1000267
57. Kanikowska D, Mali?ska A, Mickiewicz A, Zawada A, Rutkowski R, Pawlaczyk K, et al. Effect of flaxseed (Linum usitatissimum L.) supplementation on vascular endothelial cell morphology and function in patients with dyslipidaemia—a preliminary observation. Nutrients. 2022;14(14):2879. doi: https://doi.org/10.3390/nu14142879
58. Ahmed DH, Fateh HL. Impact of flaxseed supplementation on lipid profile and liver enzymes in patients with non-alcoholic fatty liver disease: systematic review and meta-analysis of randomized controlled trials. Prostaglandins Other Lipid Mediat. 2024;173:106838. doi: https://doi.org/10.1016/j.prostaglandins.2024.106838
59. Jalili C, Pezeshki M, Askarpour M, Marx W, Hassani B, Hadi A, et al. The effect of flaxseed supplementation on circulating adiponectin and leptin concentration in adults: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2020;34(7):1578–86. doi: https://doi.org/10.1002/ptr.6634
60. Hadi A, Askarpour M, Salamat S, Ghaedi E, Symonds ME, Miraghajani M. Effect of flaxseed supplementation on lipid profile: an updated systematic review and dose-response meta-analysis of sixty-two randomized controlled trials. Pharmacol Res. 2020;152:104622. doi: https://doi.org/10.1016/j.phrs.2019.104622
61. Akowuah P, Rumbaut R, Burns A. Diet-reversal strategy for attenuating high fat diet-induced corneal dysregulation. Invest Ophthalmol Vis Sci. 2022;63(7):3256–A0291.
62. Braga SP, Delanogare E, Machado AE, Prediger RD, Moreira ELG. Switching from high-fat feeding (HFD) to regular diet improves metabolic and behavioral impairments in middle-aged female mice. Behav Brain Res. 2021;398:112969. doi: https://doi.org/10.1016/j.bbr.2020.112969
63. Adedeji TG, Olapade-Olaopa EO. Dietary reversal reverts diet-induced alterations in obstructed bladders of Wistar rats. Nutrition. 2021;89:111346. doi: https://doi.org/10.1016/j.nut.2021.111346
64. Rapps K, Kisliouk T, Marco A, Weller A, Meiri N. Dieting reverses histone methylation and hypothalamic AgRP regulation in obese rats. Front Endocrinol. 2023;14:1121829. doi: https://doi.org/10.3389/fendo.2023.1121829
65. Pourjafari F, Haghpanah T, Sharififar F, Nematollahi-Mahani SN, Afgar A, Asadi Karam G, et al. Protective effects of hydro-alcoholic extract of foeniculum vulgare and linum usitatissimum on ovarian follicle reserve in the first-generation mouse pups. Heliyon. 2019;5(10):e02540. doi: https://doi.org/10.1016/j.heliyon.2019. e02540
66. Dobrian AD, Davies MJ, Prewitt RL, Lauterio TJ.Development of hypertension in a rat model of diet-induced obesity. Hypertension. 2000;35(4):1009–15. doi: https://doi.org/10.1161/01.hyp.35.4.1009
67. Diniz YS, Burneiko RM, Seiva FRF, Almeida FQA, Galhardi CM, Filho JLVBN, et al. Diet compounds, glycemic index and obesity-related cardiac effects. Int J Cardiol. 2008;124(1):92–9. doi: https://doi.org/10.1016/j.ijcard.2006.12.025
68. Bastías-Pérez M, Serra D, Herrero L. Dietary options for rodents in the study of obesity. Nutrients. 2020;12(11):3234. doi: https://doi.org/10.3390/nu12113234
69. Hanif Palla A, Talat Iqbal N, Minhas K, Gilani A-H. Flaxseed extract exhibits mucosal protective effect in acetic acid induced colitis in mice by modulating cytokines, antioxidant and antiinflammatory mechanisms. Int Immunopharmacol. 2016;38:153–66. doi: https://doi.org/10.1016/j.intimp.2016.04.043
70. Es-Said S, Lafhal K, Elkhiat A, Hammoud M, Regbaoui N, Ezoubeiri A, et al. Flaxseed extract reduces tissue accumulation and enhances urinary excretion of chondroitin sulphate in the rat: a possible new path in substrate reduction therapy for mucopolysaccharidosis. Pharm Biol. 2022;60:879–88. doi: https://doi.org/10.1080/1388020 9.2022.2068618
71. Rodríguez-Correa E, González-Pérez I, Clavel-Pérez PI, Contreras- Vargas Y, Carvajal K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice? Nutr Diabetes 2020;10:24. doi: https://doi.org/10.1038/s41387-020-0127-4
72. Ghasemi A, Hedayati M, Biabani H. Protein precipitation methods evaluated for determination of serum nitric oxide end products by the Griess assay. Jmsr. 2007;2(15):29–32.
73. Miranda KM, Espey MG, Wink DA. A Rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62–71. doi: https://doi.org/10.1006/niox.2000.0319
74. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103–11. doi: https://doi.org/10.1016/j.clinbiochem.2005.08.008
75. Leopoldo AS, Lima-Leopoldo AP, Nascimento AF, Luvizotto RAM, Sugizaki MM, Campos DHS, et al. Classification of different degrees of adiposity in sedentary rats. Braz J Med Biol Res. 2016;49(4):e5028. doi: https://doi.org/10.1590/1414-431x20155028
76. Taylor BA, Phillips SJ.Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics. 1996;34(3):389–98. doi: https://doi.org/10.1006/geno.1996.0302
77. Carreres L, Jílková ZM, Vial G, Marche PN, Decaens T, Lerat H. Modeling diet-induced NAFLD and NASH in rats: a comprehensive review. Biomedicines. 2021;9(4):378. doi: https://doi.org/10.3390/biomedicines9040378
78. do Nascimento AL, Furtado G da C, Vilhena VM, Carvalho H de O, Sales PF, Barcellos AON, et al. Osteoprotective effect of the phytonutraceutical Ormona® on ovariectomy-induced osteoporosis in Wistar rats. Nutraceuticals. 2024;4(2):147–64. doi: https://doi.org/10.3390/nutraceuticals4020010
79. Folahan JT, Olorundare OE, Ajayi AM, Oyewopo AO, Soyemi SS, Adeneye AA, et al. Oxidized dietary lipids induce vascular inflammation and atherogenesis in post-menopausal rats: estradiol and selected antihyperlipidemic drugs restore vascular health in vivo. Lipids Health Dis. 2023;22(1):107. doi: https://doi.org/10.1186/s12944-023-01818-y
80. Oliva L, Alemany M, Fernández-López JA, Remesar X. Circulating oestradiol determines liver lipid deposition in rats fed standard diets partially unbalanced with higher lipid or protein proportions. Br J Nutr. 2022;128(8):1499–508. doi: https://doi.org/10.1017/s0007114521004505
81. Quirós Cognuck S, Reis WL, Silva MS, Zorro SV, Almeida-Pereira G, Debarba LK, et al. Age and sex influence the response in lipid metabolism of dehydrated Wistar rats. Sci Rep. 2022;12(1):9164. doi: https://doi.org/10.1038/s41598-022-11587-w
82. Plissonneau C, Sivignon A, Chassaing B, Capel F, Martin V, Etienne M, et al. Beneficial effects of linseed supplementation on gut mucosa-associated microbiota in a physically active mouse model of Crohn’s disease. Int J Mol Sci. 2022;23(11):5891. doi: https://doi.org/10.3390/ijms23115891
83. Ren Y, Xu Z, Qiao Z, Wang X, Yang C. Flaxseed lignan alleviates the paracetamol-induced hepatotoxicity associated with regulation of gut microbiota and serum metabolome. Nutrients. 2024;16(2):295. doi: https://doi.org/10.3390/nu16020295
84. Afzal U, Butt MS, Ashfaq F, Bilal A, Suleria HAR. Bioassessment of flaxseed powder and extract against hyperglycemia and hypercholesterolemia using Sprague Dawley rats. Clin Phytosci. 2020;6(1):5. doi: https://doi.org/10.1186/s40816-020-0150-y
85. Pereira JPC, Oliveira EA, Pereira FAC, Seixas JN, Guimaraes CS de O, Del Bianco Borges B. Beneficial effects of flaxseed and/or mulberry extracts supplementation in ovariectomized Wistar rats. Nutrients. 2022;14(15):3238. doi: https://doi.org/10.3390/nu14153238
86. Seike M, Ashida H, Yamashita Y. Dietary flaxseed oil induces production of adiponectin in visceral fat and prevents obesity in mice. Nutr Res. 2024;121:16–27. doi: https://doi.org/10.1016/j.nutres.2023.11.004
87. Paschos GK, Zampelas A, Panagiotakos DB, Katsiougiannis S, Griffin BA, Votteas V, et al. Effects of flaxseed oil supplementation on plasma adiponectin levels in dyslipidemic men. Eur J Nutr. 2007;46(6):315–20. doi: https://doi.org/10.1007/s00394-007-0668-5
88. Roy B, Palaniyandi SS. Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci. 2021;11:77. doi: https://doi.org/10.1186/s13578-021-00587-4
89. Nguyen TMD. Adiponectin: role in physiology and pathophysiology. Int J Prev Med. 2020;11:136. doi: https://doi.org/10.4103/ijpvm.IJPVM_193_20
90. Maeda N, Funahashi T, Matsuzawa Y, Shimomura I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis. 2020;292:1–9. doi: https://doi.org/10.1016/j.atherosclerosis.2019.10.021
91. Bauzá-Thorbrügge M, Vuji?i? M, Chanclón B, Palsdottir V, Pillon NJ, Benrick A, Wernstedt Asterholm I. Adiponectin stimulates Sca1+CD34--adipocyte precursor cells associated with hyperplastic expansion and beiging of brown and white adipose tissue. Metabolism. 2024;151:155716. doi: https://doi.org/10.1016/j.metabol.2023.155716
92. Abbasi S, Karimi K, Hossein Moridpour A, Musazadeh V, Faghfouri AH, Jozi H. Can flaxseed supplementation affect circulating adipokines in adults? An updated systematic review and meta-analysis of randomized controlled trials. Front Nutr. 2023;10:1179089. doi: https://doi.org/10.3389/fnut.2023.1179089
93. Wang M, Zhang XJ, Feng K, He C, Li P, Hu YJ, et al. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice. Sci Rep. 2016;6(1):26826. doi: https://doi.org/10.1038/srep26826
94. Guan Y, Zuo F, Zhao J, Nian X, Shi L, Xu Y, et al. Relationships of adiponectin to regional adiposity, insulin sensitivity, serum lipids, and inflammatory markers in sedentary and endurance-trained Japanese young women. Front Endocrinol. 2023;14:1097034. doi: https://doi.org/10.3389/fendo.2023.1097034
95. Guo Q, Chang B, Yu QL, Xu ST, Yi XJ, Cao SC. Adiponectin treatment improves insulin resistance in mice by regulating the expression of the mitochondrial-derived peptide MOTS-c and its response to exercise via APPL1–SIRT1–PGC-1α. Diabetologia. 2020;63(12):2675–88. doi: https://doi.org/10.1007/s00125-020-05269-3
96. Yu X, Deng Q, Tang Y, Xiao L, Liu L, Yao P, et al. Flaxseed oil attenuates hepatic steatosis and insulin resistance in mice by rescuing the adaption to ER stress. J Agric Food Chem. 2018;66(41):10729–40. doi: https://doi.org/10.1021/acs.jafc.8b03906
97. Morshedzadeh N, Rahimlou M, Shahrokh S, Karimi S, Mirmiran P, Zali MR. The effects of flaxseed supplementation on metabolic syndrome parameters, insulin resistance and inflammation in ulcerative colitis patients: an open-labeled randomized controlled trial. Phytother Res. 2021;35(7):3781–91. doi: https://doi.org/10.1002/ptr.7081
98. Yuan X, Bao X, Liu X, Li X. Flaxseed-derived peptides ameliorate hepatic cholesterol metabolism in Sprague-Dawley rats fed a high-cholesterol and high-fat diet. J Sci Food Agric. 2022;102(12):5348–57. doi: http://dx.doi.org/10.1002/jsfa.11888
99. Youness ER, Hussein JS, Ibrahim AMM, Agha FE. Flaxseed oil attenuates monosodium glutamate-induced brain injury via improvement of fatty acids contents. Biomed Pharmacol J.2019;12(2):527–32. doi: https://doi.org/10.13005/bpj/1671
100. Dias GD, Cartolano FC, Freitas MCP, Santa-Helena E, Markus MRP, Santos RD, et al. Adiponectin predicts the antioxidant capacity and size of high-density lipoprotein (HDL) in individuals with diabetes mellitus. J Diabetes Complications. 2021;35:107856. doi: https://doi.org/10.1016/j.jdiacomp.2021.107856
101. Zocchi M, Della Porta M, Lombardoni F, Scrimieri R, Zuccotti GV, Maier JA, et al. A potential interplay between HDLs and adiponectin in promoting endothelial dysfunction in obesity. Biomedicines. 2022;10:1344. doi: https://doi.org/10.3390/biomedicines10061344
102. Wang G, Wang Y, Luo Z. Effect of adiponectin variant on lipid profile and plasma adiponectin levels: a multicenter systematic review and meta-analysis. Cardiovasc Ther. 2022;2022:4395266. doi: https://doi.org/10.1155/2022/4395266
103. Zhang P, Sun H, Cheng X, Li Y, Zhao Y, Mei W, et al. Dietary intake of fructose increases purine de novo synthesis: a crucial mechanism for hyperuricemia. Front Nutr. 2022;9:1045805. doi: https://doi.org/10.3389/fnut.2022.1045805
104. Zhang C, Li L, Zhang Y, Zeng C. Recent advances in fructose intake and risk of hyperuricemia. Biomed Pharmacother. 2020;131:110795. doi: https://doi.org/10.1016/j.biopha.2020.110795
105. Lin CR, Tsai PA, Wang C, Chen JY. The association between uric acid and metabolic syndrome in a middle-aged and elderly Taiwanese population: a community-based cross-sectional study. Healthcare. 2024;12(1):113. doi: https://doi.org/10.3390/healthcare12010113
106. Bowden RG, Richardson KA, Richardson LT. Uric acid and metabolic syndrome: findings from national health and nutrition examination survey. Front Med. 2022;9:1039230. doi: https://doi.org/10.3389/fmed.2022.1039230
107. Raya-Cano E, Vaquero-Abellán M, Molina-Luque R, De Pedro-Jiménez D, Molina-Recio G, Romero-Saldaña M. Association between metabolic syndrome and uric acid: a systematic review and meta-analysis. Sci Rep. 2022;12(1):18412. doi: https://doi.org/10.1038/s41598-022-22025-2
108. Al Za’abi M, Ali H, Ali BH. Effect of flaxseed on systemic inflammation and oxidative stress in diabetic rats with or without chronic kidney disease. PLoS One. 2021;16(10):e0258800. doi: https://doi.org/10.1371/journal.pone.0258800
109. Xiao J, Zhu S, Guan H, Zheng Y, Li F, Zhang X, et al. AMPK alleviates high uric acid-induced Na+-K+-ATPase signaling impairment and cell injury in renal tubules. Exp Mol Med. 2019;51(5):1–14. doi: https://doi.org/10.1038/s12276-019-0254-y
110. Tamir TY, Chaudhary S, Li AX, Trojan SE, Flower CT, Vo P, et al. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-specific metabolic reprogramming in obesity. Mol Cell. 2025;85:2211–29.e8. doi: https://doi.org/10.1016/j.molcel.2025.05.007
111. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424. doi: https://doi.org/10.1152/physrev.00029.2006
112. Mangge H. Antioxidants, inflammation and cardiovascular disease. World J Cardiol. 2014;6(6):462. doi: https://doi.org/10.4330/wjc.v6.i6.462
113. Salvatore T, Galiero R, Caturano A, Vetrano E, Loffredo G, Rinaldi L, et al. Coronary microvascular dysfunction in diabetes mellitus: pathogenetic mechanisms and potential therapeutic options. Biomedicines. 2022;10(9):2274. doi: https://doi.org/10.3390/ biomedicines10092274
114. Reijrink M, De Boer SA, Van Roon AM, Slart RHJA, Fernandez BO, Feelisch M, et al. Plasma nitrate levels are related to metabolic syndrome and are not altered by treatment with DPP-4 inhibitor linagliptin: a randomised, placebo-controlled trial in patients with early type 2 diabetes mellitus. Antioxidants. 2021;10(10):1548. doi: https://doi.org/10.3390/antiox10101548
115. Oishi JC, Castro CA, Silva KA, Fabricio V, Cárnio EC, Phillips SA, et al. Endothelial dysfunction and inflammation precedes elevations in blood pressure induced by a high-fat diet. Arq Bras Cardiol. 2018;110(6):558–67. doi: http://dx.doi.org/10.5935/abc.20180086
116. Ren G, Hwang PTJ, Millican R, Shin J, Brott BC, van Groen T, et al. Subcutaneous administration of a nitric oxide-releasing nanomatrix gel ameliorates obesity and insulin resistance in high-fat diet-induced obese mice. ACS Appl Mater Interfaces. 2022;14(17):19104–15. doi: https://doi.org/10.1021/acsami.1c24113
117. Eslami Z, Moghanlou AE, Kandi YMNP, Arabi MS, Norouzi A, Joshaghani H. Atorvastatin and flaxseed effects on biochemical indices and hepatic fat of NAFLD model in rats. Adv Biomed Res. 2023;12(1):98. doi: http://dx.doi.org/10.4103/abr.abr_21_22
118. AlRamadneh TN, AlQurashi N, Khan MSA, Hashimi SM, Javaraiah R, Al-Ostoot FH, et al. Flaxseed oil ameliorates mercuric chloride-induced liver damage in rats. J Trace Elem Med Biol. 2022;71:126965. doi: https://doi.org/10.1016/j.jtemb.2022.126965
119. Geidl-Flueck B, Gerber PA. Fructose drives de novo lipogenesis affecting metabolic health. J Endocrinol. 2023;257:e220270. doi: https://doi.org/10.1530/JOE-22-0270
120. Greupner T, Kutzner L, Nolte F, Strangmann A, Kohrs H, Hahn A, et al. Effects of a 12-week high-α-linolenic acid intervention on EPA and DHA concentrations in red blood cells and plasma oxylipin pattern in subjects with a low EPA and DHA status. Food Funct. 2018;9(3):1587–600. doi: https://doi.org/10.1039/c7fo01809f
121. Meuronen T, Lankinen MA, Fauland A, Shimizu BI, de Mello VD, Laaksonen DE, et al. Intake of camelina sativa oil and fatty fish alter the plasma lipid mediator profile in subjects with impaired glucose metabolism – a randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids. 2020;159:102143. doi: https://doi.org/10.1016/j.plefa.2020.102143
122. Patti AM, Al-Rasadi K, Giglio RV, Nikolic D, Mannina C, Castellino G, et al. Natural approaches in metabolic syndrome management. Arch Med Sci. 2018;14:422–41. doi: https://doi.org/10.5114/aoms.2017.68717
123. Kavyani Z, Pourfarziani P, Mohamad Jafari Kakhki A, Sedgh Ahrabi S, Hossein Moridpour A, Mollaghasemi N, et al. The effect of flaxseed supplementation on glycemic control in adults: an updated systematic review and meta-analysis of randomized controlled trials. J Funct Foods. 2023;110:105816. doi: https://doi.org/10.1016/j.jff.2023.105816
124. Yang C, Xia H, Wan M, Lu Y, Xu D, Yang X, et al. Comparisons of the effects of different flaxseed products consumption on lipid profiles, inflammatory cytokines and anthropometric indices in patients with dyslipidemia related diseases: systematic review and a dose-response meta-analysis of randomized controlled trials. Nutr Metab. 2021;18:91. doi: https://doi.org/10.1186/s12986-021-00619-3
Year
Month