Cissus quadrangularis Linn. (CQ) is traditionally used for bone healing. Recent preclinical studies suggest its potential for managing osteoporosis and arthritis due to its bioactive compounds. This review evaluates CQ’s therapeutic mechanisms, optimal dosage, and long-term effects in animal models. A systematic literature search was conducted across PubMed, SCOPUS, JSTOR, and Web of Science, focusing on English-language animal studies from 2003 to 2024 (osteoporosis) and 2010–2024 (arthritis). Inclusion criteria required studies assessing bone health following CQ administration, while human studies, reviews, non-English publications, and accidental fracture studies were excluded. Among 294 identified articles, 33 met the criteria—23 for osteoporosis and 14 for arthritis. CQ’s bone-healing properties are attributed to β-sitosterol, lupeol, and vitamin C. Different formulations, such as bone-strengthening polyherbal supplements and sustained-release tablets (SRTs), demonstrated significant bone-protective effects. A dosage of 25 mg CQ in 100 mg SRT increased serum alkaline phosphatase, calcium, and phosphorus levels, while 405 mg/kg enhanced trabecular thickness and reduced osteoclastogenesis. CQ extracts (300–500 mg/kg) improved joint health by mitigating oxidative stress and pro-inflammatory cytokines. CQ exhibits promising anti-osteoporotic and anti-arthritic effects in preclinical models. However, well-designed clinical trials are necessary to confirm its efficacy and safety in humans for potential therapeutic applications.
Parinam PSS, Hedaoo RP, Patil M, Mohile A, Khatwani N, Aainapure A. Therapeutic potential of Cissus quadrangularis Linn. (Veld Grape) in osteoporosis and arthritis: A scoping review of preclinical evidence. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.247119
1. Office of the Surgeon General (US). Bone health and osteoporosis: a report of the surgeon general. Rockville, MD: Office of the Surgeon General (US); 2004 [cited 2025 May 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/20945569/
2. Babhulkar S, Seth S. Prevalence of osteoporosis in India: an observation of 31,238 adults. Int J Res Orthop. 2021;7(2):362–8. doi: http://dx.doi.org/10.18203/issn.2455-4510.intjresorthop20210630
3. Khinda R, Valecha S, Kumar N, Walia JPS, Singh K, Sethi S, et al. Prevalence and predictors of osteoporosis and osteopenia in postmenopausal women of Punjab, India. Int J Environ Res Public Health. 2022;19(5):2999. doi: http://dx.doi.org/10.3390/ijerph19052999
4. Cooper C, Ferrari S. IOF compendium of osteoporosis [Internet]. 2nd ed. Nyon, Switzerland: International Osteoporosis Foundation; 2019 [cited 2025 May 16]. Available from: https://www.osteoporosis.foundation/
5. Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis. 2012;4(2):61–76. doi: http://dx.doi.org/10.1177/1759720X11430858
6. Ji M, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015;1(1):9–13. doi: http://dx.doi.org/10.1016/j.cdtm.2015.02.006
7. Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15(6):993–1000. doi: http://dx.doi.org/10.1359/jbmr.2000.15.6.993
8. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300. doi: http://dx.doi.org/10.1210/er.2009-0024
9. Ralston SH. Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab. 2002;87(6):2460–6. doi: http://dx.doi.org/10.1210/jcem.87.6.8621
10. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–26. doi: http://dx.doi.org/10.1016/S0140-6736(11)60243-2
11. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–61. doi: http://dx.doi.org/10.1038/nature01661
12. Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017;376(10):957–70. doi: http://dx.doi.org/10.1056/NEJMra1505557
13. Perez-Ruiz F, Dalbeth N, Bardin T. A review of uric acid, crystal deposition disease, and gout. Adv Ther. 2015;32(1):31–41. doi: http://dx.doi.org/10.1007/s12325-014-0175-z
14. Martini A, Lovell DJ. Juvenile idiopathic arthritis: state of the art and future perspectives. Ann Rheum Dis. 2010;69(7):1260–3. doi: http://dx.doi.org/10.1136/ard.2010.133033
15. Messier SP. Obesity and osteoarthritis: disease genesis and nonpharmacologic weight management. Rheum Dis Clin North Am. 2008;34(3):713–29. doi: http://dx.doi.org/10.1016/j.rdc.2008.04.007
16. Klareskog L, Malmström V, Lundberg K, Padyukov L, Alfredsson L. Smoking, citrullination and genetic variability in the immunopathogenesis of rheumatoid arthritis. Semin Immunol. 2011;23(2):92–8. doi: http://dx.doi.org/10.1016/j.smim.2011.01.014
17. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192(1):230–7. doi: http://dx.doi.org/10.1111/j.1749-6632.2009.05240.x
18. Lips P, van Schoor NM. Quality of life in patients with osteoporosis. Osteoporos Int. 2005;16(5):447–55. doi:
19. Pal CP, Singh P, Chaturvedi S, Pruthi KK, Vij A. Epidemiology of knee osteoarthritis in India and related factors. Indian J Orthop. 2016;50(5):518–22. doi: http://dx.doi.org/10.4103/0019-5413.189608
20. Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc. 2009;84(7):632–8. doi: http://dx.doi.org/10.5958/0975-4385.2018.00014.6
21. Tiwari M, Gupta PS, Sharma N. Ethnopharmacological, phytochemical and pharmacological review of plant Cissus quadrangularis L. Res J Pharmac Phytoch. 2018;10(1):81. doi: http://dx.doi.org/10.5958/0975-4385.2018.00014.6
22. Hamid HS, Patil S. A phytochemical and pharmacological review of an Indian plant: Cissus quadrangularis. Med Sci Forum. 2023;21(1):20. doi: https://doi.org/10.3390/ECB2023-14557
23. Singh P, Gupta A, Qayoom I, Singh S, Kumar A. Orthobiologics with phytobioactive cues: a paradigm in bone regeneration. Biomed Pharmacother. 2020;130:110754. doi: http://dx.doi.org/10.1016/j.biopha.2020.110754
24. Sharma A, Sharma C, Shah OP, Chigurupati S, Ashokan B, Meerasa SS, et al. Understanding the mechanistic potential of plant-based phytochemicals in management of postmenopausal osteoporosis. Biomed Pharmacother. 2023;163:114850. doi: http://dx.doi.org/10.1016/j.biopha.2023.114850
25. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8. doi: http://dx.doi.org/10.1074/jbc.R109.041087
26. Bhat S, Chowdhary R. Effect of Cissus quadrangularis hydrogel on enhancing osseointegration of titanium implant to bone: an in vivo study. J Contemp Dent Pract. 2022;23(6):582–8. Available from: https://www.thejcdp.com/doi/pdf/10.5005/jp-journals-10024-3363
27. CABI. Cissus quadrangularis (treebine): foliage and stem [Internet]. Wallingford, UK: CABI Compendium; 2022 [cited 2025 May 16]. Available from: https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.13396
28. CABI. Cissus quadrangularis [Internet]. Wallingford, UK: CABI Digital Library; 2023 [cited 2025 Jun 3]. Available from: https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.13396
29. Thakur P, Kuriakose C, Cherian KE, Asha HS, Kapoor N, Paul TV. Knowledge gap regarding osteoporosis among medical professionals in Southern India. J Eval Clin Pract. 2020;26(1):272–80. doi: http://dx.doi.org/10.1111/jep.13164
30. Shukla R, Pathak A, Kambuja S, Sachan S, Mishra A, Kumar S. Pharmacognostical, phytochemical and pharmacological overview: Cissus quadrangularis Linn. Int J Pharm Biol Res. 2015;3(3):59–65. doi: http://dx.doi.org/10.30750/ijpbr.3.3.10
31. Farjana HN, Valiathan GM. Cissus quadrangularis: a comprehensive review as an emerging biomaterial for periodontal regeneration. J Oral Res Rev. 2025;17(1):87–92. doi: http://dx.doi.org/10.4103/jorr.jorr_27_24
32. Pathomwichaiwat T, Ochareon P, Soonthornchareonnon N, Ali Z, Khan IA, Prathanturarug S. Alkaline phosphatase activity-guided isolation of active compounds and new dammarane-type triterpenes from Cissus quadrangularis hexane extract. J Ethnopharmacol. 2015;160:52–60. doi: http://dx.doi.org/10.1016/j.jep.2014.11.026
33. Bhadada SK, Chadha M, Sriram U, Pal R, Paul TV, Khadgawat R, et al. The Indian Society for Bone and Mineral Research (ISBMR) position statement for the diagnosis and treatment of osteoporosis in adults. Arch Osteoporos. 2021;16(1):1–12. doi: https://doi.org/10.1007/s11657-021-00954-1
34. Parisuthiman D, Singhatanadgit W, Dechatiwongse T, Koontongkaew S. Cissus quadrangularis extract enhances biomineralization through up-regulation of MAPK-dependent alkaline phosphatase activity in osteoblasts. In Vitro Cell Dev Biol Anim. 2009;45(3-4):194–200. doi: http://dx.doi.org/10.1007/s11626-008-9158-1
35. Siddiqui S, Ahmad E, Gupta M, Rawat V, Shivnath N, Banerjee M, et al. Cissus quadrangularis Linn exerts dose-dependent biphasic effects: osteogenic and anti-proliferative, through modulating ROS, cell cycle and Runx2 gene expression in primary rat osteoblasts. Cell Prolif. 2015;48(4):443–54. doi: http://dx.doi.org/10.1111/cpr.12195
36. Guerra JM, Hanes MA, Rasa C, Loganathan N, Innis-Whitehouse W, Gutierrez E, et al. Modulation of bone turnover by Cissus quadrangularis after ovariectomy in rats. J Bone Miner Metab. 2019;37(5):780–95. doi: http://dx.doi.org/10.1007/s00774-018-0983-3
37. Potu BK, Rao MS, Nampurath GK, Bhat KM, Chamallamudi MR, Nayak SR. Petroleum ether extract of Cissus quadrangularis (LINN) stimulates the growth of fetal bone during intrauterine developmental period: a morphometric analysis. Clinics (Sao Paulo). 2008;63(6):815–20. doi: http://dx.doi.org/10.1590/s1807-59322008000600018
38. Nath R, Kar BK, Dhadiwal RK, Daftary GV, Khemnar BM, Patil NN. Role of Cissus quadrangularis in bone loss pathologies. Int J Orthop Sci. 2024;10(1):196–201. doi: http://dx.doi.org/10.22271/ortho.2024.v10.i1c.3521
39. Potu BK, Bhat KM, Rao MS, Nampurath GK, Chamallamudi MR, Nayak SR, et al. Petroleum ether extract of Cissus quadrangularis (Linn.) enhances bone marrow mesenchymal stem cell proliferation and facilitates osteoblastogenesis. Clinics. 2009;64(10):993–8. doi: http://dx.doi.org/10.1590/S1807-59322009001000010
40. Shirwaikar A, Khan S, Malini S. Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat. J Ethnopharmacol. 2003;89(2-3):245–50. doi: http://dx.doi.org/10.1016/j.jep.2003.08.004
41. Hatai J, Banerjee SK. Study the molecular docking for established phytochemicals of Cissus quadrangularis against tumor necrosis factor alpha (TNF-α) for the prevention of inflammation of arthritis as a major risk of urinary incontinence. J Pharmacogn Phytochem. 2019;8(3):2094–8.
42. Bhujade AM, Talmale S, Kumar N, Gupta G, Reddanna P, Das SK, et al. Evaluation of Cissus quadrangularis extracts as an inhibitor of COX, 5-LOX, and proinflammatory mediators. J Ethnopharmacol. 2012;141(3):989–96. doi: https://doi.org/10.1016/j.jep.2012.03.044
43. Tasadduq R, Gordon J, Al-Ghanim KA, Lian JB, Van Wijnen AJ, Stein JL, et al. Ethanol extract of Cissus quadrangularis enhances osteoblast differentiation and mineralization of murine pre-osteoblastic MC3T3-E1 cells. J Cell Physiol. 2017;232(3):540–7. doi: http://dx.doi.org/10.1002/jcp.25449
44. Muthusami S, Gopalakrishnan V, Stanley JA, Krishnamoorthy S, Ilangovan R, Gopalakrishnan VK, et al. Cissus quadrangularis prevented the ovariectomy induced oxidative stress in the femur of adult albino rats. Biomed Pharmacother. 2016;81:416–23. doi: http://dx.doi.org/10.1016/j.biopha.2016.04.021
45. Azam Z, Sapra L, Baghel K, Sinha N, Gupta RK, Soni V, et al. Cissus quadrangularis (Hadjod) inhibits RANKL-induced osteoclastogenesis and augments bone health in an estrogen-deficient preclinical model of osteoporosis via modulating the host osteoimmune system. Cells. 2023;12(2):216. doi: http://dx.doi.org/10.3390/cells12020216
46. Toor RH, Tasadduq R, Adhikari A, Chaudhary MI, Lian JB, Stein JL, et al. Ethyl acetate and n-butanol fraction of Cissus quadrangularis promotes the mineralization potential of murine pre-osteoblast cell line MC3T3-E1 (sub-clone 4). J Cell Physiol. 2019;234(7):10300–14. doi: http://dx.doi.org/10.1002/jcp.27707
47. Toor RH, Tasadduq R, Lian JB, Stein JL, Stein GS, Shakoori AR. Cissus quadrangularis (hexane fraction) inhibits RANKL-induced osteoclast differentiation of murine macrophage RAW264.7 cell line. Pak J Zool. 2023;55(6):2707–15. doi: http://dx.doi.org/10.17582/journal.pjz/20220312001022
48. Toor RH, Malik S, Qamar H, Batool F, Tariq M, Nasir Z, et al. Osteogenic potential of hexane and dichloromethane fraction of Cissus quadrangularis on murine preosteoblast cell line MC3T3-E1 (subclone 4). J Cell Physiol. 2019;234(12):23082–96. doi: http://dx.doi.org/10.1002/jcp.28869
49. Potu BK, Rao MS, Nampurath GK, Chamallamudi MR, Nayak SR, Thomas H. Anti-osteoporotic activity of the petroleum ether extract of Cissus quadrangularis Linn. in ovariectomized Wistar rats. Chang Gung Med J. 2010;33(3):252–7.
50. Sirasanagandla SR, Karkala RP, Potu BK, Bhat KM. Beneficial effect of Cissus quadrangularis Linn. on osteopenia associated with streptozotocin-induced type 1 diabetes mellitus in male Wistar rats. Adv Pharmacol Sci. 2014;2014:483051. doi:
51. Bodhankar S, Aswar U, Mohan V. Antiosteoporotic activity of phytoestrogen-rich fraction separated from ethanol extract of aerial parts of Cissus quadrangularis in ovariectomized rats. Indian J Pharmacol. 2012;44(3):345. doi: http://dx.doi.org/10.4103/0253-7613.96310
52. Shamina S, Anjana A, Suja S. Haematological assessment of methanolic stem extract of Cissus quadrangularis Linn. against Freund’s complete adjuvant induced female albino arthritic rats. Int J Pharma Bio Sci. 2020;10(4):L155–63. doi: https://doi.org/10.22376/ijpbs/lpr.2020.10.4.L155-163
53. Vaijayanthimala P, Sakthipriya M, Sangameswaran B. In vitro anti-arthritic activity of Cissus quadrangularis stem extract. Asian J Pharm Clin Res. 2019;12(1):250. doi: http://dx.doi.org/10.22159/ajpcr.2019.v12i1.27353
54. Lakshmanan DK, Ravichandran G, Elangovan A, Jeyapaul P, Murugesan S, Thilagar S. Cissus quadrangularis (veldt grape) attenuates disease progression and anatomical changes in mono sodium iodoacetate (MIA)-induced knee osteoarthritis in the rat model. Food Funct. 2020;11(9):7842–55. doi: http://dx.doi.org/10.1039/d0fo00992j
55. Samarasinghe RM, Kanwar RK, Kumar K, Kanwar JR. Antiarthritic and chondroprotective activity of Lakshadi Guggul in novel alginate-enclosed chitosan calcium phosphate nanocarriers. Nanomedicine. 2014;9(6):819–37. doi: http://dx.doi.org/10.2217/nnm.13.219
56. Gopinathan N, Harish G, Kumar GA, Chitra K, Reddy CU in vitro anti-arthritic, anti-inflammatory and anti-oxidant activity of Cissus quadrangularis Linn. Indian J Res Pharm Biotechnol. 2015;3(1):24.
57. Bhujade A, Talmale S. In vivo studies on antiarthritic activity of Cissus quadrangularis against adjuvant induced arthritis. J Clin Cell Immunol. 2015;6:3. doi: http://dx.doi.org/10.4172/2155-9899.1000327
58. Kumar R, Gupta YK, Singh S, Arunraja S. Cissus quadrangularis attenuates the adjuvant-induced arthritis by downregulating pro-inflammatory cytokine and inhibiting angiogenesis. J Ethnopharmacol. 2015;175:346–55. doi: http://dx.doi.org/10.1016/j.jep.2015.08.058
59. Sayers EW, Beck J, Bolton EE, Brister JR, Chan J, Comeau DC, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2024;52(D1):D33–43. doi: http://dx.doi.org/10.1093/nar/gkad1044
60. PubChem. Ascorbic acid [Internet]. Bethesda, MD: National Library of Medicine (US); 2004 [cited 2025 May 29]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ascorbic-Acid
61. PubChem. Beta-sitosterol [Internet]. Bethesda, MD: National Library of Medicine (US); 2004 [cited 2025 May 29]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Beta-Sitosterol
62. Singh N, Singh V, Singh R, Pant A, Pal U, Malkunje L, et al. Osteogenic potential of Cissus quadrangularis assessed with osteopontin expression. Natl J Maxillofac Surg. 2013;4(1):52–6. doi: http://dx.doi.org/10.4103/0975-5950.117884
63. Sanaye M, Bora B, Chawda M, Kshirsagar V. Evaluation of anti-osteoporotic activity of asthiposhak tablets in ovariectomized rats. Int J Pharm Sci Res. 2021;12(6):3498–507. doi: http://dx.doi.org/10.13040/IJPSR.0975-8232.12(6).3498-07
64. Dongare AB, Jadhav DRK. Investigation of anti-arthritic activity of sustained release tablet of different herbal plants by using in vivo and in vitro models. J Pharm Negat Results. 2023;14(2):S02.105. doi: http://dx.doi.org/10.47750/pnr.2023.14.S02.105
65. Nawghare CG, Taur AT, Sawate AR. Studies on the physico-phytochemical and anti-arthritic properties of Hadjod (Cissus quadrangularis) stem powder. J Pharmacogn Phytochem. 2017;6(5):443–5.
66. Sundaran J, Begum R, Vasanthi M, Kamalapathy M, Bupesh G, Sahoo U. A short review on pharmacological activity of Cissus quadrangularis. Bioinformation. 2020;16(8):579–85. doi: http://dx.doi.org/10.6026/9732063001657
67. Patel BDP, Tiwari NN, Upadhayaya A. Binomial nomenclature and its relation to nomenclature of medicinal plants in Ayurveda Classics. J Ayurveda Campus. 2022;1(1):33–44. Available from: http://jacjournal.org/jac/index.php/jac/article/view/6
68. Lakshmanan DK, Ravichandran G, Elangovan A, Thilagar S. Fortification of raw rice and rice flour using Cissus quadrangularis L. (veldt grape) stem powder to overcome osteoporosis and its associated skeletal complications through staple diet. J Food Biochem. 2021;45(10):e13918. doi: http://dx.doi.org/10.51648/jac.11
Year
Month