Aloe barbadensis gel is widely recognized for its wound-healing, anti-collagenase, anti-elastase, and antioxidant properties. However, its role in inhibiting elastase and collagenase enzymes, which are crucial for wound repair and skin regeneration, remains unexplored. This study evaluated the antioxidant properties, and elastase, collagenase, and hyaluronidase inhibitory activities of A. barbadensis gel extract in vitro, and by using molecular docking to understand the interaction mechanisms of key compounds with enzyme activity sites. The gel extract contained several active compounds, including phenolics, flavonoids, anthraquinones, and sterols, as determined via liquid chromatography connected to a hybrid ion trap and time-of-flight-mass spectrometry. Aloin A (47.54 ± 0.22 mg/g extract) and Aloin B (35.85 ± 0.17 mg/g extract) quantified via high-performance liquid chromatography were the main compounds in the gel extract. In this study, the antioxidant activity of gel extract was investigated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azino-bis-(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS) assays. The gel extract showed better DPPH radical-scavenging activity than ABTS radical-scavenging activity. Particularly, the gel extract exhibited anticollagenase, anti-elastase, and anti-hyaluronidase activities with the half-maximal inhibitory concentrations (IC50) of 79.01 ± 0.11, 78.23 ± 0.07, and 87.31 ± 0.13 μg/ml, respectively. By molecular docking, aloins A and B derived from A. barbadensis gel extract have a strong affinity for elastase inhibition via the common amino acid HIS57. Moreover, non-cytotoxicity was observed in human fibroblasts treated with gel extract at concentrations ≤ 100 μg/ml. The IC50 value for cytotoxicity of the gel extract was more than 1,000 μg/ml. Treatment with the extract for 48 hours enhanced wound healing by inducing wound closure in a fibroblast scratch test. The wound-healing effects of the gel extract can be attributed to its antioxidant properties, which reduce oxidative stress, as well as its ability to inhibit elastase and collagenase, enzymes that degrade key proteins involved in skin regeneration. These results suggest that A. barbadensis gel extract is useful for application in human skin care and pharmaceutical products.
Rungruang R, Ratanathavorn W, Boohuad N, Phakeenuya V, Peasura N, Panichakul T. Anti-elastase, anti-collagenase, and anti-hyaluronidase activities of Aloe barbadensis gel extract: In vitro and molecular docking studies. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.235918
1. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72. doi: https://doi.org/10.1111/j.1600-0625.2008.00786.x
2. Enoch S, Leaper DJ. Basic science of wound healing. Surgery. 2008;26:31–7. doi: https://doi.org/10.1016/j.mpsur.2007.11.005
3. Rosenbaum AJ, Banerjee S, Rezak KM, Uhl RL. Advances in wound management. JAAOS. 2018;26:833–43. doi: https://doi.org/10.5435/JAAOS-D-17-00024
4. Jiratchayamaethasakul C, Ding Y, Hwang O, Im ST, Jang Y, Myung SW, et al. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish Aquat Sci. 2020;23:1– 9. doi: https://doi.org/10.1186/s41240-020-00149-8
5. Fitzmaurice SD, Sivamani RK, Isseroff RR. Antioxidant therapies for wound healing: a clinical guide to currently commercially available products. Skin Pharmacol Physiol. 2011;24:113–26. doi: https://doi.org/10.1159/000322643
6. Chatatikun M, Chiabchalard A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity. BMC Complement Altern Med. 2017;17:1–9. doi: https://doi.org/10.1186/s12906-017-1994-7
7. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14:89–96. doi: https://doi.org/10.1111/iwj.12557
8. Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. Future J. Pharm. Sci. 2021;7(1):1–21. doi: https://doi.org/10.1186/s43094-021-00296-2
9. Sacan O, Akev N, Yanardag R. In vitro inhibitory effect of Aloe vera (L.) Burm. f. leaf extracts on the activity of some enzymes and antioxidant activity. Indian J Biochem Biophys. 2017;54:82–9.
10. Ro HS, Jang HJ, Kim GR, Park SJ, Lee HY. Enhancement of the anti-skin wrinkling effects of Aloe arborescens miller extracts associated with lactic acid fermentation. J Evid Based Complement Altern Med. 2020;1:2743594. doi: https://doi.org/10.1155/2020/2743594
11. Sacan O, Akev N, Yanardag R. Inhibitory effects of Aloe vera extracts on anti-tyrosinase, anti-collagenase and anti-elastase potential. Bangladesh J. Bot. 2024;53(3):597–603. doi: https://doi.org/10.3329/bjb.v53i3.76280
12. Mechqoq, H., Hourfane, S., El Yaagoubi, M., El Hamdaoui, A., da Silva Almeida, J. R. G., Rocha, J. M., et al. Molecular docking, tyrosinase, collagenase, and elastase inhibition activities of argan by-products. Cosmetics. 2022;9(1):24. doi: https://doi.org/10.3390/cosmetics9010024
13. Nutho B, Tungmunnithum D. Exploring major flavonoid phytochemicals from Nelumbo nucifera Gaertn. as potential skin anti-aging agents: in silico and in vitro evaluations. Int. J. Mol. Sci. 2023;24(23):16571. doi: https://doi.org/10.3390/ijms242316571
14. Rungruang R, Ratanathavorn W, Boohuad N, Selamassakul O, Kaisangsri N. Antioxidant and anti-aging enzyme activities of bioactive compounds isolated from selected Zingiberaceae plants. Agr Nat Res. 2021;55(1):153–60. doi: http://doi.org/10.34044/j.anres.2021.55.1.20
15. Rungruang R, Panichakul T, Rattanathavorn W, Kaisangsri N, Kerdchoechuen O, Laohakunjit N, et al. Effects of extraction methods on the flavonoid and phenolic contents and anti-aging properties of Rhyncholaeliocattleya Haw Yuan Beauty extracts. Sci. Asia. 2021;47(6):698–706. doi: https://doi:10.2306/scienceasia1513-1874.2021.100
16. Aldayel TS, Grace MH, Lila MA, Yahya MA, Omar UM, Alshammary G. LC-MS characterization of bioactive metabolites from two Yemeni Aloe spp. with antioxidant and antidiabetic properties. Arab J Chem. 2020;13:5040–49. doi: https://doi.org/10.1016/j.arabjc.2020.02.003
17. Brown PN, Yu R, Kuan CH, Finley J, Mudge EM, Dentali S. Determination of Aloin A and Aloin B in Aloe vera raw materials and finished products by high-performance liquid chromatography: single-laboratory validation. J AOAC Int. 2014;97:1323–28. doi: https://doi.org/10.5740/jaoacint.13-028
18. Studzi?ska-Sroka E, Dudek-Makuch M, Chanaj-Kaczmarek J, Czepulis N, Korybalska K, Rutkowski R, et al. Anti-inflammatory activity and phytochemical profile of Galinsoga Parviflora Cav. Molecules. 2018;23:2133. doi: https://doi.org/10.3390/molecules23092133
19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. doi: https://doi.org/10.1002/jcc.21256
20. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–28. doi: https://doi.org/10.1016/0040-4020(80)80168-2
21. Vichai V, Kirtikara K. Sulforhodamine B. Colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1:1112–16. doi: https://doi.org/10.1038/nprot.2006.179
22. Panichakul T, Ponnikorn S, Tupchiangmai W, Haritakun, W, Srisanga K. Skin anti-aging potential of Ipomoea pes-caprae ethanolic extracts on promoting cell proliferation and collagen production in human fibroblasts (CCD-986sk Cells). Pharmaceuticals. 2022;15:969. doi: https://doi.org/10.3390/ph15080969
23. Jawade NR, Chavan AR. Ultrasonic-assisted extraction of aloin from Aloe vera gel. Procedia Eng. 2013;51:487–93. doi: https://doi.org/10.1016/j.proeng.2013.01.069
24. Aida PUIA, Chedea VS, Levai AM, Bocsan IC, Buzoianu AD. Pot Aloe vera gel–a natural source of antioxidants. Not Bot Horti Agrobo. 2022;50:12732. doi: https://doi.org/10.15835/nbha50212732
25. Huber M, Rembia?kowska E, ?rednicka D, Bügel S, Van De Vijver LPL. Organic food and impact on human health: assessing the status quo and prospects of research. NJAS Wageningen J. Life Sci. 2011;58:103–9. doi: https://doi.org/10.1016/j.njas.2011.01.004
26. Bicikliski O, Trajkova F, Mihajlov L, Jordanovska S, Tashev K. Vitamin C and total antioxidant content in pepper fruits (Capsicum annuum L.): Comparative analysis of peppers grown in conventional and organic agricultural systems. Annu. Res Rev Biol. 2018;27(5):1– 11. doi: https://doi.org/10.9734/ARRB/2018/42851
27. Hu Y, Xu J, Hu Q. Evaluation of antioxidant potential of Aloe vera (Aloe barbadensis Miller) extracts. J. Agric. Food Chem. 2003;51(26):7788–91. doi: https://doi.org/10.1021/jf034255i
28. Quispe C, Villalobos M, Bórquez J, Simirgiotis M. Chemical composition and antioxidant activity of Aloe vera from the Pica Oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. J Chem. 2018;6123850. doi: https://doi.org/10.1155/2018/6123850
29. Ozsoy N, Candoken E, Akev N. Implications for degenerative disorders: antioxidative activity, total phenols, flavonoids, ascorbic acid, β-carotene and β-tocopherol in Aloe vera. Oxid Med Cell Longev. 2009;2(2):99–106. doi: https://doi.org/10.4161/ oxim.2.2.8493
30. Tomsone L, Kruma Z, Galoburda R. Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana). Int. J. Agric. Eng. 2012;6:236–41. doi: https://doi.org/10.5281/zenodo.1071162
31. Martínez-Burgos WJ, Serra JL, MarsigliaF RM, Montoya P, Sarmiento-Vásquez Z, Marin O, et al. Aloe vera: from ancient knowledge to the patent and innovation landscape–a review. S Afr J Bot. 2022;147:993–1006. doi: https://doi.org/10.1016/j.sajb.2022.02.034
32. Patel K, Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of aloin: a concise report. J Acute Dis. 2013;2:262–69. doi: https://doi.org/10.1016/S2221-6189(13)60141-9
33. Curto EM, Labelle A, Chandler HL. Aloe vera: an in vitro study of effects on corneal wound closure and collagenase activity. Vet. Ophthalmol. 2014;17:403–10. doi: https://doi.org/10.1111/vop.12163
34. Ac?kara OB, Ilhan M, Kurtul E, Šmejkal K, Akkol EK. Inhibitory activity of Podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes. Bioorg. Chem. 2019;93:103330. doi: https://doi.org/10.1016/j.bioorg.2019.103330
35. Kudalkar MD, Nayak A, Bhat KS, Nayak RN. Effect of Azadirachta indica (Neem) and Aloe vera as compared to subantimicrobial dose doxycycline on matrix metalloproteinases (MMP)-2 and MMP-9: an in-vitro study. Ayu. 2014;35(1):85–9. doi: https://doi.org/10.4103/0974-8520.141947
36. Barrantes E, Guinea M. Inhibition of collagenase and metalloproteinases by aloins and aloe gel. Life Sci. 2003;72:843–50. doi: https://doi.org/10.1016/S0024-3205(02)02308-1
37. Thring TS, Hili P, Naughton DP. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med. 2009; 9:1–11. doi: https://doi.org/10.1186/1472-6882-9-27
38. Mereles D, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises?. Int. J. Mol. Sci. 2011;12(9):5592–603. doi: https://doi.org/10.3390/ijms12095592
39. Greenwald RA, Golub LM, Ramamurthy NS, Chowdhury M, Moak SA, Sorsa T. In vitro sensitivity of the three mammalian collagenases to tetracycline inhibition: relationship to bone and cartilage degradation. Bone. 1998;22:33–8. doi: https://doi.org/10.1016/S8756-3282(97)00221-4
40. Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. JMR. 2015;28:581–604. doi: https://doi.org/10.1002/jmr.2471
41. Nursamsiar, Siregar M, Awaluddin A, Nurnahari N, Nur S, Febrina E, Asnawi A. Molecular docking and molecular dynamic simulation of the aglycone of curculigoside A and its derivatives as alpha glucosidase inhibitors. Rasayan J Chem. 2020;13(1):690–98. doi: https://doi.org/10.31788/RJC.2020.1315577
42. H?? M, Dziedzic K, Górecka D, J?drusek-Goli?ska A, Gujska E. Aloe vera (L.) Web: natural sources of antioxidants—a review. Plant Foods Hum Nutr. 2019;74(3):255–65. doi: https://doi.org/10.1007/s11130-019-00747-5
43. Eun Lee K, Bharadwaj S, Yadava U, Gu Kang S. Evaluation of caffeine as inhibitor against collagenase, elastase and tyrosinase using in silico and in vitro approach. J Enzyme Inhib Med Chem. 2019;34:927–36. doi: https://doi.org/10.1080/14756366.2019.15969 04
44. Donarska B, Z ??czkowski K. Recent advances in the development of elastase inhibitors. Future Med Chem. 2020;12:1809–13. doi: https://doi.org/10.4155/fmc-2020-0163
45. Atiba A, Nishimura M, Kakinuma S, Hiraoka T, Goryo M, Shimada Y, et al. Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production. Am J Surg. 2011;201:809– 18. doi: https://doi.org/10.1016/j.amjsurg.2010.06.017
46. Oliveira, ACL, Tabrez S, Shakil S, Khan MI, Asghar MN, Matias BD, et al. Mutagenic, antioxidant and wound healing properties of Aloe vera. J. Ethnopharmacol. 2018;227:191–97. doi: https://doi:10.1016/j.jep.2018.08.034
47. Dat AD, Poon F, Pham KB, Doust J. Aloe vera for treating acute and chronic wounds. CDSR. 2012;(2):1–24. doi: https://doi.org/10.1002/14651858.CD008762
48. Nowinski D, Lysheden AS, Gardner H, Rubin K, Gerdin B, Ivarsson M. Analysis of gene expression in fibroblasts in response to keratinocyte derived factors in vitro: potential implications for the wound healing process. J. Invest. Dermatol. 2004;122:216–21. doi: https://doi.org/10.1046/j.0022-202X.2003.22112.x
49. Menon SN, Flegg JA, McCue SW, Schugart RC, Dawson RA, McElwain DS. Modelling the interaction of keratinocytes and fibroblasts during normal and abnormal wound healing processes. Proc Biol Sci. 2012;279(1741):3329–38. doi: https://doi.org/10.1098/rspb.2012.0319
50. Spiekstra SW, Breetveld M, Rustemeyer T, Scheper RJ, Gibbs S. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen. 2007;15(5):708–17. doi: https://doi.org/10.1111/j.1524-475X.2007.00280.x
Year
Month