Herbal systems are difficult to study due to their complex chemical composition, even if spectroscopic and chromatographic methods are used to standardize herbal remedies. To address these issues, many advanced analytical methods have been developed to assess the quality of herbal medications, including spectroscopy (nuclear magnetic resonance, infrared, ultraviolet, and inductively coupled plasma spectroscopy techniques, high-performance liquid chromatography, gas chromatography, capillary electrophoresis and extensive approaches along with hybridized chemometric techniques which are used to extract valuable information through various data processing methodologies which are increasingly used in herbal medication authentication. Numerous phytochemical and pharmacological investigations show that one plant can contain hundreds or thousands of chemical constituents. These components create the intended pharmacological effects through various targets and pathways. As a result, the WHO has developed standards for evaluating herbal therapies. Advanced software tools are used in chemometrics, which combines chemistry and statistics to extract relevant information from large chemical datasets. In conclusion, chemometrics software includes spectral analysis, statistical approaches, machine learning, and data visualization. Researchers can gain insights from large chemical datasets using these software programs, improving our understanding of complex systems. This review article describes chemometrics software tools and their use in data analysis, pattern detection, and model construction which are extremely useful for the futuristic approaches towards evaluating herbal medicines.
Banerjee D, Parekh N, Kaur G, Sharma S, Buttar HS, Chauhan R, Kaur D, Tuli HS, Jairoun A, Shahwan M. Chemometric perspective on herbal medicine evaluation: Tools, techniques, and trends. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.226539
1. Rebiai A, Hemmami H, Zeghoud S, Ben Seghir B, Kouadri I, Eddine LS, et al. Current application of chemometrics analysis in authentication of natural products: a review. Comb Chem High Throughput Screen. 2022;25:945-72. https://doi.org/10.2174/1386207324666210309102239 | |
2. Takamura A, Ozawa T. Recent advances of vibrational spectroscopy and chemometrics for forensic biological analysis. Analyst. 2021;146:7431-49. https://doi.org/10.1039/D1AN01637G | |
3. Sarraguça MC, Lopes JA. Quality control of pharmaceuticals with NIR: from lab to process line. Vib Spectrosc. 2009;49:204-10. https://doi.org/10.1016/j.vibspec.2008.07.013 | |
4. Liu X, Bai B, Rogers KM, Wu D, Qian Q, Qi F, et al. Determining the geographical origin and cultivation methods of Shanghai special rice using NIR and IRMS. Food Chem. 2022;394:133425. https://doi.org/10.1016/j.foodchem.2022.133425 | |
5. Robotti E, Marengo E. Chemometric multivariate tools for candidate biomarker identification: LDA, PLS-DA, SIMCA, ranking-PCA. Methods Mol Biol. 2016;1384:237-67. https://doi.org/10.1007/978-1-4939-3255-9_14 | |
6. Cao X, You G, Li H, Li D, Wang M, Ren X. Comparative investigation for rotten xylem (kuqin) and strip types (tiaoqin) of scutellaria baicalensis georgi based on fingerprinting and chemical pattern recognition. Molecules. 2019;24:2431. https://doi.org/10.3390/molecules24132431 | |
7. Lavine B, Workman J. Chemometrics. Anal Chem. 2008;80:4519- 31. https://doi.org/10.1021/ac800728t | |
8. Acevska J, Stefkov G, Cvetkovikj I, Petkovska R, Kulevanova S, Cho J, et al. Fingerprinting of morphine using chromatographic purity profiling and multivariate data analysis. J Pharm Biomed Anal. 2015;109:18-27. https://doi.org/10.1016/j.jpba.2015.02.016 | |
9. Huang Q, Yang D, Jiang L, Zhang H, Liu H, Kotani K. A novel unsupervised adaptive learning method for long-term electromyography (EMG) pattern recognition. Sensors. 2017;17:1370. https://doi.org/10.3390/s17061370 | |
10. Sensinger JW, Lock BA, Kuiken TA. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans Neural Syst Rehabil Eng. 2009;17:270-8. https://doi.org/10.1109/TNSRE.2009.2023282 | |
11. Zhang X, Mei X, Wang Z, Wu J, Liu G, Hu H, et al. Chemical fingerprint and quantitative analysis for the quality evaluation of docynia dcne leaves by high-performance liquid chromatography coupled with chemometrics analysis. J Chromatogr Sci. 2018;56:575- 81. https://doi.org/10.1093/chromsci/bmy007 | |
12. Xie J-P, Ni H-G. Chromatographic fingerprint similarity analysis for pollutant source identification. Environ Pollut. 2015;207:341-4. https://doi.org/10.1016/j.envpol.2015.09.049 | |
13. Schulze AE, De Beer D, Mazibuko SE, Muller CJF, Roux C, Willenburg EL, et al. Assessing similarity analysis of chromatographic fingerprints of Cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation. Anal Bioanal Chem. 2016;408:639-49. https://doi.org/10.1007/s00216-015-9147-7 | |
14. Souza M, José Comin J, Moresco R, Maraschin M, Kurtz C, Emílio Lovato P, et al. Exploratory and discriminant analysis of plant phenolic profiles obtained by UV-vis scanning spectroscopy. J Integr Bioinform. 2021;18:20190056. https://doi.org/10.1515/jib-2019-0056 | |
15. Silva EFR, da Silva Santos BR, Minho LAC, Brandão GC, de Jesus Silva M, Silva MVL, et al. Characterization of the chemical composition (mineral, lead and centesimal) in pine nut (Araucaria angustifolia (Bertol.) Kuntze) using exploratory data analysis. Food Chem. 2022;369:130672. https://doi.org/10.1016/j.foodchem.2021.130672 | |
16. G?d?k B. Antioxidant, antimicrobial activities and fatty acid compositions of wild Berberis spp. by different techniques combined with chemometrics (PCA and HCA). Molecules. 2021;26:7448. https://doi.org/10.3390/molecules26247448 | |
17. Al-Dabooni S, Wunsch D. Model order reduction based on agglomerative hierarchical clustering. IEEE Trans Neural Netw Learn Syst. 2019;30:1881-95. https://doi.org/10.1109/TNNLS.2018.2873196 | |
18. McLachlan GJ, Bean RW, Ng S-K. Clustering. Methods Mol Biol. 2008;453:423-39. https://doi.org/10.1007/978-1-60327-429-6_22 | |
19. Sharma A, López Y, Tsunoda T. Divisive hierarchical maximum likelihood clustering. BMC Bioinformatics. 2017;18:546. https://doi.org/10.1186/s12859-017-1965-5 | |
20. Aeria G, Claes P, Vandermeulen D, Clement JG. Targeting specific facial variation for different identification tasks. Forensic Sci Int. 2010;201:118-24. https://doi.org/10.1016/j.forsciint.2010.03.005 | |
21. Oliveira S, Douglas de Sousa Fernandes D, Véras G. Overview of analytical techniques associated with pattern recognition methods in sugarcane spirits samples. Crit Rev Anal Chem. 2019;49:477-87. https://doi.org/10.1080/10408347.2018.1548926 | |
22. Shamsudin S, Selamat J, Sanny M, A R SB, Jambari NN, Khatib A. A comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona itama honey from different origins and classification by chemometrics analysis. Molecules. 2019;24:3898. https://doi.org/10.3390/molecules24213898 | |
23. Mohamad Asri MN, Verma R, Mahat NA, Nor NAM, Mat Desa WNS, Ismail D. Discrimination and source correspondence of black gel inks using Raman spectroscopy and chemometric analysis with UMAP and PLS-DA. Chemom Intell Lab Syst. 2022;225:104557. https://doi.org/10.1016/j.chemolab.2022.104557 | |
24. Afy-Shararah M, Salonitis K. Integrated modeling of "soft" and "hard" variables in manufacturing. Int J Adv Manuf Technol. 2022;122:4259-65. https://doi.org/10.1007/s00170-022-09872-z | |
25. Harnly J. Botanical authentication using one-class modeling. J AOAC Int. 2023;106:1077-86. https://doi.org/10.1093/jaoacint/qsad023 | |
26. Salehi M, Zare A, Taheri A. Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of respirable crystalline silica by Fourier-transform infrared spectroscopy (FTIR). Ann Work Expo Health. 2021;65:346-57. https://doi.org/10.1093/annweh/wxaa097 | |
27. Ahmad I, Sheraz MA, Ahmed S, Anwar Z. Multicomponent spectrometric analysis of drugs and their preparations. Profiles Drug Subst Excip Relat Methodol. 2019;44:379-413. https://doi.org/10.1016/bs.podrm.2018.11.002 | |
28. Akbari Lakeh M, Abdollahi H. Known-value constraint in multivariate curve resolution. Anal Chim Acta. 2018;1030:42-51. https://doi.org/10.1016/j.aca.2018.06.030 | |
29. Ferreira RJ, Rosa TR, Ribeiro J, Barthus RC. Simultaneous metal determination in artisanal cachaça by using voltammetry and multivariate calibration. Food Chem. 2020;314:126126. https://doi.org/10.1016/j.foodchem.2019.126126 | |
30. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics. 2019;68:e86. https://doi.org/10.1002/cpbi.86 | |
31. Li Q, Qi L, Zhao K, Ke W, Li T, Xia L. Integrative quantitative and qualitative analysis for the quality evaluation and monitoring of Danshen medicines from different sources using HPLC-DAD and NIR combined with chemometrics. Front Plant Sci. 2022;13:932855. https://doi.org/10.3389/fpls.2022.932855 | |
32. Charles AL, Alamsjah MA. Application of chemometric techniques: an innovative approach to discriminate two seaweed cultivars by physico-functional properties. Food Chem. 2019;289:269-77. https://doi.org/10.1016/j.foodchem.2019.03.051 | |
33. Oravec M, Beganovi? A, Gál L, ?eppan M, Huck CW. Forensic classification of black inkjet prints using Fourier transform near-infrared spectroscopy and linear discriminant analysis. Forensic Sci Int. 2019;299:128-34. https://doi.org/10.1016/j.forsciint.2019.03.041 | |
34. Liu J, Xu Y, Liu S, Yu S, Yu Z, Low SS. Application and progress of chemometrics in voltammetric biosensing. Biosensors. 2022;12:494. https://doi.org/10.3390/bios12070494 | |
35. Beke ÁK, Gyürkés M, Nagy ZK, Marosi G, Farkas A. Digital twin of low dosage continuous powder blending - Artificial neural networks and residence time distribution models. Eur J Pharm Biopharm. 2021;169:64-77. https://doi.org/10.1016/j.ejpb.2021.09.006 | |
36. Brinson RG, Elliott KW, Arbogast LW, Sheen DA, Giddens JP, Marino JP, et al. Principal component analysis for automated classification of 2D spectra and interferograms of protein therapeutics: influence of noise, reconstruction details, and data preparation. J Biomol NMR. 2020;74:643-56. https://doi.org/10.1007/s10858-020-00332-y | |
37. Liu H-L, Zeng Y-T, Zhao X, Ye Y-L, Wang B, Tong H-R. Monitoring the authenticity of pu'er tea via chemometric analysis of multielements and stable isotopes. Food Res Int. 2020;136:109483. https://doi.org/10.1016/j.foodres.2020.109483 | |
38. Cruz-Tirado JP, Lima Brasil Y, Freitas Lima A, Alva Pretel H, Teixeira Godoy H, Barbin D, et al. Rapid and non-destructive cinnamon authentication by NIR-hyperspectral imaging and classification chemometrics tools. Spectrochim Acta A Mol Biomol Spectrosc. 2023;289:122226. https://doi.org/10.1016/j.saa.2022.122226 | |
39. Bevilacqua M, Nescatelli R, Bucci R, Magrì AD, Magrì AL, Marini F. Chemometric classification techniques as a tool for solving problems in analytical chemistry. J AOAC Int. 2014;97:19-28. https://doi.org/10.5740/jaoacint.SGEBevilacqua | |
40. Dastjerdi AG, Akhgari M, Kamali A, Mousavi Z. Principal component analysis of synthetic adulterants in herbal supplements advertised as weight loss drugs. Complement Ther Clin Pract. 2018;31:236-41. https://doi.org/10.1016/j.ctcp.2018.03.007 | |
41. Du W, Li X, Yang Y, Yue X, Jiang D, Ge W, et al. Quantitative determination, principal component analysis and discriminant analysis of eight marker compounds in crude and sweated Dipsaci Radix by HPLC-DAD. Pharm Biol. 2017;55:2129-35. https://doi.org/10.1080/13880209.2017.1297469 | |
42. Khan MN, Ul Haq F, Rahman S, Ali A, Musharraf SG. Metabolite distribution and correlation studies of Ziziphus jujuba and Ziziphus nummularia using LC-ESI-MS/MS. J Pharm Biomed Anal. 2020;178:112918. https://doi.org/10.1016/j.jpba.2019.112918 | |
43. Nie Q-X, Zhang Q-X, Zhu Y-J, Wu P-J, He Y-L, Wang J-Y. Relationship between the UPLC fingerprints of citrus reticulata "Chachi" leaves and their antioxidant activities. Int J Anal Chem. 2022;2022:1-11. https://doi.org/10.1155/2022/5834525 | |
44. Li H, Feng T, Wen Y, Li L, Liu Y, Ren X, et al. Comparative investigation for raw and processed products of euodiae fructus | |
based on high-performance liquid chromatography fingerprints and chemical pattern recognition. Chem Biodivers. 2021;18:e2100281. https://doi.org/10.1002/cbdv.202100281 | |
45. Bastien P, Bertrand F, Meyer N, Maumy-Bertrand M. Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data. Bioinformatics. 2015;31:397-404. https://doi.org/10.1093/bioinformatics/btu660 | |
46. Manley SC, Hair JF, Williams RI, McDowell WC. Essential new PLS-SEM analysis methods for your entrepreneurship analytical toolbox. Int Entrep Manag J. 2021;17:1805-25. https://doi.org/10.1007/s11365-020-00687-6 | |
47. Sarstedt M, Hair JF, Pick M, Liengaard BD, Radomir L, Ringle CM. Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychol Mark. 2022;39:1035- 64. https://doi.org/10.1002/mar.21640 | |
48. Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front Chem. 2018;6:576. https://doi.org/10.3389/fchem.2018.00576 | |
49. Saleh AA, Hegazy M, Abbas S, Elkosasy A. Development of distribution maps of spectrally similar degradation products by Raman chemical imaging microscope coupled with a new variable selection technique and SIMCA classifier. Spectrochim Acta A Mol Biomol Spectrosc. 2022;268:120654. https://doi.org/10.1016/j.saa.2021.120654 | |
50. Fabijani? I, ?avuži? D, Mandac Zubak A. Meningococcal polysaccharides identification by NIR spectroscopy and chemometrics. Carbohydr Polym. 2019;216:36-44. https://doi.org/10.1016/j.carbpol.2019.03.102 | |
51. Marengo E, Robotti E, Bobba M, Righetti PG. Evaluation of the variables characterized by significant discriminating power in the application of SIMCA classification method to proteomic studies. J Proteome Res. 2008;7:2789-96. https://doi.org/10.1021/pr700719a | |
52. Pomerantsev AL, Rodionova OY. Multiclass partial least squares discriminant analysis: taking the right way-A critical tutorial. J Chemom. 2018;32:e3030. https://doi.org/10.1002/cem.3076 | |
53. Sainani KL. Introduction to principal components analysis. PM&R. 2014;6:275-8. https://doi.org/10.1016/j.pmrj.2014.02.001 | |
54. Giuliani A. The application of principal component analysis to drug discovery and biomedical data. Drug Discov Today. 2017;22:1069- 76. https://doi.org/10.1016/j.drudis.2017.01.005 | |
55. Belmonte-Sánchez E, Romero-González R, Garrido Frenich A. Applicability of high-resolution NMR in combination with chemometrics for the compositional analysis and quality control of spices and plant-derived condiments. J Sci Food Agric. 2021;101:3541-50. https://doi.org/10.1002/jsfa.11051 | |
56. Yang J, Xu J, Zhang X, Wu C, Lin T, Ying Y. Deep learning for vibrational spectral analysis: recent progress and a practical guide. Anal Chim Acta. 2019;1081:6-17. https://doi.org/10.1016/j.aca.2019.06.012 | |
57. Challa S, Potumarthi R. Chemometrics-based process analytical technology (PAT) tools: applications and adaptation in pharmaceutical and biopharmaceutical industries. Appl Biochem Biotechnol. 2013;169:66-76. https://doi.org/10.1007/s12010-012-9950-y | |
58. Abdolmaleki A, Ghasemi J, Shiri F, Pirhadi S. Application of multivariate linear and nonlinear calibration and classification methods in drug design. Comb Chem High Throughput Screen. 2015;18:795-808. https://doi.org/10.2174/1386207318666150803142158 | |
59. Cuypers W, Lieberzeit PA. Combining two selection principles: sensor arrays based on both biomimetic recognition and chemometrics. Front Chem. 2018;6:268. https://doi.org/10.3389/fchem.2018.00268 | |
60. Arvanitoyannis IS, Vlachos A. Maize authentication: quality control methods and multivariate analysis (Chemometrics). Crit Rev Food Sci Nutr. 2009;49:501-37. https://doi.org/10.1080/10408390802068140 | |
61. Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, et al. Chemometrics in analytical chemistry-part I: history, experimental design and data analysis tools. Anal Bioanal Chem. 2017;409:5891-9. https://doi.org/10.1007/s00216-017-0517-1 | |
62. Xu J, Hagler A. Chemoinformatics and drug discovery. Molecules. 2002;7:566-600. https://doi.org/10.3390/70800566 | |
63. Dupont MF, Elbourne A, Cozzolino D, Chapman J, Truong VK, Crawford RJ, et al. Chemometrics for environmental monitoring: a review. Analytical Methods. 2020;12:4597-620. https://doi.org/10.1039/D0AY01389G | |
64. Efenberger-Szmechtyk M, Nowak A, Kregiel D. Implementation of chemometrics in quality evaluation of food and beverages. Crit Rev Food Sci Nutr. 2018;58:1747-66. https://doi.org/10.1080/10408398.2016.1276883 | |
65. Beger RD, Sun J, Schnackenberg LK. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 2010;243:154-66. https://doi.org/10.1016/j.taap.2009.11.019 | |
66. Eriksson L, Antti H, Gottfries J, Holmes E, Johansson E, Lindgren F, et al. Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (GPM). Anal Bioanal Chem. 2004;380:419-29. https://doi.org/10.1007/s00216-004-2783-y | |
67. Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, et al. Chemometrics in analytical chemistry-part II: modeling, validation, and applications. Anal Bioanal Chem. 2018;410:6691- 704. https://doi.org/10.1007/s00216-018-1283-4 | |
68. Segelke T, Schelm S, Ahlers C, Fischer M. Food authentication: truffle (Tuber spp.) species differentiation by FT-NIR and chemometrics. Foods. 2020;9:922. https://doi.org/10.3390/foods9070922 | |
69. Biancolillo A, D'Archivio AA, Marini F, Vitale R. Editorial: novel applications of chemometrics in analytical chemistry and chemical process industry. Front Chem. 2022;10:926309. https://doi.org/10.3389/fchem.2022.926309 | |
70. Workman J, Koch M, Veltkamp D. Process analytical chemistry. Anal Chem. 2005;77:3789-806. https://doi.org/10.1021/ac050620o | |
71. De Zan MM, Teglia CM, Robles JC, Goicoechea HC. A novel ion-pairing chromatographic method for the simultaneous determination of both nicarbazin components in feed additives: chemometric tools for improving the optimization and validation. Talanta. 2011;85:142-50. https://doi.org/10.1016/j.talanta.2011.03.043 | |
72. Timmerman ME. Multilevel component analysis. Br J Math Stat Psychol. 2006;59:301-20. https://doi.org/10.1348/000711005X67599 | |
73. Di C, Crainiceanu CM, Jank WS. Multilevel sparse functional principal component analysis. Stat. 2014;3:126-43. https://doi.org/10.1002/sta4.50 | |
74. Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics-a review in human disease diagnosis. Anal Chim Acta. 2010;659:23- 33. https://doi.org/10.1016/j.aca.2009.11.042 | |
75. Du, Zhang, Hou, Zhao, Li. Combined 2D-QSAR, principal component analysis and sensitivity analysis studies on fluoroquinolones' genotoxicity. Int J Environ Res Public Health. 2019;16:4156. https://doi.org/10.3390/ijerph16214156 | |
76. Hendriks MMWB, Eeuwijk FA van, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, et al. Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem. 2011;30:1685-98. https://doi.org/10.1016/j.trac.2011.04.019 |
Year
Month