Chemometric perspective on herbal medicine evaluation: Tools, techniques, and trends

Dekai Banerjee Neel Parekh Ginpreet Kaur Sanjay Sharma Harpal Singh Buttar Ritu Chauhan Damandeep Kaur Hardeep Singh Tuli Ammar Abdulrahman Jairoun Moyad Shahwan   

Open Access   

Published:  Apr 20, 2025

DOI: 10.7324/JAPS.2025.226539
Abstract

Herbal systems are difficult to study due to their complex chemical composition, even if spectroscopic and chromatographic methods are used to standardize herbal remedies. To address these issues, many advanced analytical methods have been developed to assess the quality of herbal medications, including spectroscopy (nuclear magnetic resonance, infrared, ultraviolet, and inductively coupled plasma spectroscopy techniques, high-performance liquid chromatography, gas chromatography, capillary electrophoresis and extensive approaches along with hybridized chemometric techniques which are used to extract valuable information through various data processing methodologies which are increasingly used in herbal medication authentication. Numerous phytochemical and pharmacological investigations show that one plant can contain hundreds or thousands of chemical constituents. These components create the intended pharmacological effects through various targets and pathways. As a result, the WHO has developed standards for evaluating herbal therapies. Advanced software tools are used in chemometrics, which combines chemistry and statistics to extract relevant information from large chemical datasets. In conclusion, chemometrics software includes spectral analysis, statistical approaches, machine learning, and data visualization. Researchers can gain insights from large chemical datasets using these software programs, improving our understanding of complex systems. This review article describes chemometrics software tools and their use in data analysis, pattern detection, and model construction which are extremely useful for the futuristic approaches towards evaluating herbal medicines.


Keyword:     Chemometrics principal component analysis PLS_ Toolbox unscrambler X SIMCA


Citation:

Banerjee D, Parekh N, Kaur G, Sharma S, Buttar HS, Chauhan R, Kaur D, Tuli HS, Jairoun A, Shahwan M. Chemometric perspective on herbal medicine evaluation: Tools, techniques, and trends. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.226539

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Rebiai A, Hemmami H, Zeghoud S, Ben Seghir B, Kouadri I, Eddine LS, et al. Current application of chemometrics analysis in authentication of natural products: a review. Comb Chem High Throughput Screen. 2022;25:945-72. https://doi.org/10.2174/1386207324666210309102239

2. Takamura A, Ozawa T. Recent advances of vibrational spectroscopy and chemometrics for forensic biological analysis. Analyst. 2021;146:7431-49. https://doi.org/10.1039/D1AN01637G

3. Sarraguça MC, Lopes JA. Quality control of pharmaceuticals with NIR: from lab to process line. Vib Spectrosc. 2009;49:204-10. https://doi.org/10.1016/j.vibspec.2008.07.013

4. Liu X, Bai B, Rogers KM, Wu D, Qian Q, Qi F, et al. Determining the geographical origin and cultivation methods of Shanghai special rice using NIR and IRMS. Food Chem. 2022;394:133425. https://doi.org/10.1016/j.foodchem.2022.133425

5. Robotti E, Marengo E. Chemometric multivariate tools for candidate biomarker identification: LDA, PLS-DA, SIMCA, ranking-PCA. Methods Mol Biol. 2016;1384:237-67. https://doi.org/10.1007/978-1-4939-3255-9_14

6. Cao X, You G, Li H, Li D, Wang M, Ren X. Comparative investigation for rotten xylem (kuqin) and strip types (tiaoqin) of scutellaria baicalensis georgi based on fingerprinting and chemical pattern recognition. Molecules. 2019;24:2431. https://doi.org/10.3390/molecules24132431

7. Lavine B, Workman J. Chemometrics. Anal Chem. 2008;80:4519- 31. https://doi.org/10.1021/ac800728t

8. Acevska J, Stefkov G, Cvetkovikj I, Petkovska R, Kulevanova S, Cho J, et al. Fingerprinting of morphine using chromatographic purity profiling and multivariate data analysis. J Pharm Biomed Anal. 2015;109:18-27. https://doi.org/10.1016/j.jpba.2015.02.016

9. Huang Q, Yang D, Jiang L, Zhang H, Liu H, Kotani K. A novel unsupervised adaptive learning method for long-term electromyography (EMG) pattern recognition. Sensors. 2017;17:1370. https://doi.org/10.3390/s17061370

10. Sensinger JW, Lock BA, Kuiken TA. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans Neural Syst Rehabil Eng. 2009;17:270-8. https://doi.org/10.1109/TNSRE.2009.2023282

11. Zhang X, Mei X, Wang Z, Wu J, Liu G, Hu H, et al. Chemical fingerprint and quantitative analysis for the quality evaluation of docynia dcne leaves by high-performance liquid chromatography coupled with chemometrics analysis. J Chromatogr Sci. 2018;56:575- 81. https://doi.org/10.1093/chromsci/bmy007

12. Xie J-P, Ni H-G. Chromatographic fingerprint similarity analysis for pollutant source identification. Environ Pollut. 2015;207:341-4. https://doi.org/10.1016/j.envpol.2015.09.049

13. Schulze AE, De Beer D, Mazibuko SE, Muller CJF, Roux C, Willenburg EL, et al. Assessing similarity analysis of chromatographic fingerprints of Cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation. Anal Bioanal Chem. 2016;408:639-49. https://doi.org/10.1007/s00216-015-9147-7

14. Souza M, José Comin J, Moresco R, Maraschin M, Kurtz C, Emílio Lovato P, et al. Exploratory and discriminant analysis of plant phenolic profiles obtained by UV-vis scanning spectroscopy. J Integr Bioinform. 2021;18:20190056. https://doi.org/10.1515/jib-2019-0056

15. Silva EFR, da Silva Santos BR, Minho LAC, Brandão GC, de Jesus Silva M, Silva MVL, et al. Characterization of the chemical composition (mineral, lead and centesimal) in pine nut (Araucaria angustifolia (Bertol.) Kuntze) using exploratory data analysis. Food Chem. 2022;369:130672. https://doi.org/10.1016/j.foodchem.2021.130672

16. G?d?k B. Antioxidant, antimicrobial activities and fatty acid compositions of wild Berberis spp. by different techniques combined with chemometrics (PCA and HCA). Molecules. 2021;26:7448. https://doi.org/10.3390/molecules26247448

17. Al-Dabooni S, Wunsch D. Model order reduction based on agglomerative hierarchical clustering. IEEE Trans Neural Netw Learn Syst. 2019;30:1881-95. https://doi.org/10.1109/TNNLS.2018.2873196

18. McLachlan GJ, Bean RW, Ng S-K. Clustering. Methods Mol Biol. 2008;453:423-39. https://doi.org/10.1007/978-1-60327-429-6_22

19. Sharma A, López Y, Tsunoda T. Divisive hierarchical maximum likelihood clustering. BMC Bioinformatics. 2017;18:546. https://doi.org/10.1186/s12859-017-1965-5

20. Aeria G, Claes P, Vandermeulen D, Clement JG. Targeting specific facial variation for different identification tasks. Forensic Sci Int. 2010;201:118-24. https://doi.org/10.1016/j.forsciint.2010.03.005

21. Oliveira S, Douglas de Sousa Fernandes D, Véras G. Overview of analytical techniques associated with pattern recognition methods in sugarcane spirits samples. Crit Rev Anal Chem. 2019;49:477-87. https://doi.org/10.1080/10408347.2018.1548926

22. Shamsudin S, Selamat J, Sanny M, A R SB, Jambari NN, Khatib A. A comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona itama honey from different origins and classification by chemometrics analysis. Molecules. 2019;24:3898. https://doi.org/10.3390/molecules24213898

23. Mohamad Asri MN, Verma R, Mahat NA, Nor NAM, Mat Desa WNS, Ismail D. Discrimination and source correspondence of black gel inks using Raman spectroscopy and chemometric analysis with UMAP and PLS-DA. Chemom Intell Lab Syst. 2022;225:104557. https://doi.org/10.1016/j.chemolab.2022.104557

24. Afy-Shararah M, Salonitis K. Integrated modeling of "soft" and "hard" variables in manufacturing. Int J Adv Manuf Technol. 2022;122:4259-65. https://doi.org/10.1007/s00170-022-09872-z

25. Harnly J. Botanical authentication using one-class modeling. J AOAC Int. 2023;106:1077-86. https://doi.org/10.1093/jaoacint/qsad023

26. Salehi M, Zare A, Taheri A. Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of respirable crystalline silica by Fourier-transform infrared spectroscopy (FTIR). Ann Work Expo Health. 2021;65:346-57. https://doi.org/10.1093/annweh/wxaa097

27. Ahmad I, Sheraz MA, Ahmed S, Anwar Z. Multicomponent spectrometric analysis of drugs and their preparations. Profiles Drug Subst Excip Relat Methodol. 2019;44:379-413. https://doi.org/10.1016/bs.podrm.2018.11.002

28. Akbari Lakeh M, Abdollahi H. Known-value constraint in multivariate curve resolution. Anal Chim Acta. 2018;1030:42-51. https://doi.org/10.1016/j.aca.2018.06.030

29. Ferreira RJ, Rosa TR, Ribeiro J, Barthus RC. Simultaneous metal determination in artisanal cachaça by using voltammetry and multivariate calibration. Food Chem. 2020;314:126126. https://doi.org/10.1016/j.foodchem.2019.126126

30. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics. 2019;68:e86. https://doi.org/10.1002/cpbi.86

31. Li Q, Qi L, Zhao K, Ke W, Li T, Xia L. Integrative quantitative and qualitative analysis for the quality evaluation and monitoring of Danshen medicines from different sources using HPLC-DAD and NIR combined with chemometrics. Front Plant Sci. 2022;13:932855. https://doi.org/10.3389/fpls.2022.932855

32. Charles AL, Alamsjah MA. Application of chemometric techniques: an innovative approach to discriminate two seaweed cultivars by physico-functional properties. Food Chem. 2019;289:269-77. https://doi.org/10.1016/j.foodchem.2019.03.051

33. Oravec M, Beganovi? A, Gál L, ?eppan M, Huck CW. Forensic classification of black inkjet prints using Fourier transform near-infrared spectroscopy and linear discriminant analysis. Forensic Sci Int. 2019;299:128-34. https://doi.org/10.1016/j.forsciint.2019.03.041

34. Liu J, Xu Y, Liu S, Yu S, Yu Z, Low SS. Application and progress of chemometrics in voltammetric biosensing. Biosensors. 2022;12:494. https://doi.org/10.3390/bios12070494

35. Beke ÁK, Gyürkés M, Nagy ZK, Marosi G, Farkas A. Digital twin of low dosage continuous powder blending - Artificial neural networks and residence time distribution models. Eur J Pharm Biopharm. 2021;169:64-77. https://doi.org/10.1016/j.ejpb.2021.09.006

36. Brinson RG, Elliott KW, Arbogast LW, Sheen DA, Giddens JP, Marino JP, et al. Principal component analysis for automated classification of 2D spectra and interferograms of protein therapeutics: influence of noise, reconstruction details, and data preparation. J Biomol NMR. 2020;74:643-56. https://doi.org/10.1007/s10858-020-00332-y

37. Liu H-L, Zeng Y-T, Zhao X, Ye Y-L, Wang B, Tong H-R. Monitoring the authenticity of pu'er tea via chemometric analysis of multielements and stable isotopes. Food Res Int. 2020;136:109483. https://doi.org/10.1016/j.foodres.2020.109483

38. Cruz-Tirado JP, Lima Brasil Y, Freitas Lima A, Alva Pretel H, Teixeira Godoy H, Barbin D, et al. Rapid and non-destructive cinnamon authentication by NIR-hyperspectral imaging and classification chemometrics tools. Spectrochim Acta A Mol Biomol Spectrosc. 2023;289:122226. https://doi.org/10.1016/j.saa.2022.122226

39. Bevilacqua M, Nescatelli R, Bucci R, Magrì AD, Magrì AL, Marini F. Chemometric classification techniques as a tool for solving problems in analytical chemistry. J AOAC Int. 2014;97:19-28. https://doi.org/10.5740/jaoacint.SGEBevilacqua

40. Dastjerdi AG, Akhgari M, Kamali A, Mousavi Z. Principal component analysis of synthetic adulterants in herbal supplements advertised as weight loss drugs. Complement Ther Clin Pract. 2018;31:236-41. https://doi.org/10.1016/j.ctcp.2018.03.007

41. Du W, Li X, Yang Y, Yue X, Jiang D, Ge W, et al. Quantitative determination, principal component analysis and discriminant analysis of eight marker compounds in crude and sweated Dipsaci Radix by HPLC-DAD. Pharm Biol. 2017;55:2129-35. https://doi.org/10.1080/13880209.2017.1297469

42. Khan MN, Ul Haq F, Rahman S, Ali A, Musharraf SG. Metabolite distribution and correlation studies of Ziziphus jujuba and Ziziphus nummularia using LC-ESI-MS/MS. J Pharm Biomed Anal. 2020;178:112918. https://doi.org/10.1016/j.jpba.2019.112918

43. Nie Q-X, Zhang Q-X, Zhu Y-J, Wu P-J, He Y-L, Wang J-Y. Relationship between the UPLC fingerprints of citrus reticulata "Chachi" leaves and their antioxidant activities. Int J Anal Chem. 2022;2022:1-11. https://doi.org/10.1155/2022/5834525

44. Li H, Feng T, Wen Y, Li L, Liu Y, Ren X, et al. Comparative investigation for raw and processed products of euodiae fructus

based on high-performance liquid chromatography fingerprints and chemical pattern recognition. Chem Biodivers. 2021;18:e2100281. https://doi.org/10.1002/cbdv.202100281

45. Bastien P, Bertrand F, Meyer N, Maumy-Bertrand M. Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data. Bioinformatics. 2015;31:397-404. https://doi.org/10.1093/bioinformatics/btu660

46. Manley SC, Hair JF, Williams RI, McDowell WC. Essential new PLS-SEM analysis methods for your entrepreneurship analytical toolbox. Int Entrep Manag J. 2021;17:1805-25. https://doi.org/10.1007/s11365-020-00687-6

47. Sarstedt M, Hair JF, Pick M, Liengaard BD, Radomir L, Ringle CM. Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychol Mark. 2022;39:1035- 64. https://doi.org/10.1002/mar.21640

48. Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front Chem. 2018;6:576. https://doi.org/10.3389/fchem.2018.00576

49. Saleh AA, Hegazy M, Abbas S, Elkosasy A. Development of distribution maps of spectrally similar degradation products by Raman chemical imaging microscope coupled with a new variable selection technique and SIMCA classifier. Spectrochim Acta A Mol Biomol Spectrosc. 2022;268:120654. https://doi.org/10.1016/j.saa.2021.120654

50. Fabijani? I, ?avuži? D, Mandac Zubak A. Meningococcal polysaccharides identification by NIR spectroscopy and chemometrics. Carbohydr Polym. 2019;216:36-44. https://doi.org/10.1016/j.carbpol.2019.03.102

51. Marengo E, Robotti E, Bobba M, Righetti PG. Evaluation of the variables characterized by significant discriminating power in the application of SIMCA classification method to proteomic studies. J Proteome Res. 2008;7:2789-96. https://doi.org/10.1021/pr700719a

52. Pomerantsev AL, Rodionova OY. Multiclass partial least squares discriminant analysis: taking the right way-A critical tutorial. J Chemom. 2018;32:e3030. https://doi.org/10.1002/cem.3076

53. Sainani KL. Introduction to principal components analysis. PM&R. 2014;6:275-8. https://doi.org/10.1016/j.pmrj.2014.02.001

54. Giuliani A. The application of principal component analysis to drug discovery and biomedical data. Drug Discov Today. 2017;22:1069- 76. https://doi.org/10.1016/j.drudis.2017.01.005

55. Belmonte-Sánchez E, Romero-González R, Garrido Frenich A. Applicability of high-resolution NMR in combination with chemometrics for the compositional analysis and quality control of spices and plant-derived condiments. J Sci Food Agric. 2021;101:3541-50. https://doi.org/10.1002/jsfa.11051

56. Yang J, Xu J, Zhang X, Wu C, Lin T, Ying Y. Deep learning for vibrational spectral analysis: recent progress and a practical guide. Anal Chim Acta. 2019;1081:6-17. https://doi.org/10.1016/j.aca.2019.06.012

57. Challa S, Potumarthi R. Chemometrics-based process analytical technology (PAT) tools: applications and adaptation in pharmaceutical and biopharmaceutical industries. Appl Biochem Biotechnol. 2013;169:66-76. https://doi.org/10.1007/s12010-012-9950-y

58. Abdolmaleki A, Ghasemi J, Shiri F, Pirhadi S. Application of multivariate linear and nonlinear calibration and classification methods in drug design. Comb Chem High Throughput Screen. 2015;18:795-808. https://doi.org/10.2174/1386207318666150803142158

59. Cuypers W, Lieberzeit PA. Combining two selection principles: sensor arrays based on both biomimetic recognition and chemometrics. Front Chem. 2018;6:268. https://doi.org/10.3389/fchem.2018.00268

60. Arvanitoyannis IS, Vlachos A. Maize authentication: quality control methods and multivariate analysis (Chemometrics). Crit Rev Food Sci Nutr. 2009;49:501-37. https://doi.org/10.1080/10408390802068140

61. Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, et al. Chemometrics in analytical chemistry-part I: history, experimental design and data analysis tools. Anal Bioanal Chem. 2017;409:5891-9. https://doi.org/10.1007/s00216-017-0517-1

62. Xu J, Hagler A. Chemoinformatics and drug discovery. Molecules. 2002;7:566-600. https://doi.org/10.3390/70800566

63. Dupont MF, Elbourne A, Cozzolino D, Chapman J, Truong VK, Crawford RJ, et al. Chemometrics for environmental monitoring: a review. Analytical Methods. 2020;12:4597-620. https://doi.org/10.1039/D0AY01389G

64. Efenberger-Szmechtyk M, Nowak A, Kregiel D. Implementation of chemometrics in quality evaluation of food and beverages. Crit Rev Food Sci Nutr. 2018;58:1747-66. https://doi.org/10.1080/10408398.2016.1276883

65. Beger RD, Sun J, Schnackenberg LK. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 2010;243:154-66. https://doi.org/10.1016/j.taap.2009.11.019

66. Eriksson L, Antti H, Gottfries J, Holmes E, Johansson E, Lindgren F, et al. Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (GPM). Anal Bioanal Chem. 2004;380:419-29. https://doi.org/10.1007/s00216-004-2783-y

67. Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, et al. Chemometrics in analytical chemistry-part II: modeling, validation, and applications. Anal Bioanal Chem. 2018;410:6691- 704. https://doi.org/10.1007/s00216-018-1283-4

68. Segelke T, Schelm S, Ahlers C, Fischer M. Food authentication: truffle (Tuber spp.) species differentiation by FT-NIR and chemometrics. Foods. 2020;9:922. https://doi.org/10.3390/foods9070922

69. Biancolillo A, D'Archivio AA, Marini F, Vitale R. Editorial: novel applications of chemometrics in analytical chemistry and chemical process industry. Front Chem. 2022;10:926309. https://doi.org/10.3389/fchem.2022.926309

70. Workman J, Koch M, Veltkamp D. Process analytical chemistry. Anal Chem. 2005;77:3789-806. https://doi.org/10.1021/ac050620o

71. De Zan MM, Teglia CM, Robles JC, Goicoechea HC. A novel ion-pairing chromatographic method for the simultaneous determination of both nicarbazin components in feed additives: chemometric tools for improving the optimization and validation. Talanta. 2011;85:142-50. https://doi.org/10.1016/j.talanta.2011.03.043

72. Timmerman ME. Multilevel component analysis. Br J Math Stat Psychol. 2006;59:301-20. https://doi.org/10.1348/000711005X67599

73. Di C, Crainiceanu CM, Jank WS. Multilevel sparse functional principal component analysis. Stat. 2014;3:126-43. https://doi.org/10.1002/sta4.50

74. Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics-a review in human disease diagnosis. Anal Chim Acta. 2010;659:23- 33. https://doi.org/10.1016/j.aca.2009.11.042

75. Du, Zhang, Hou, Zhao, Li. Combined 2D-QSAR, principal component analysis and sensitivity analysis studies on fluoroquinolones' genotoxicity. Int J Environ Res Public Health. 2019;16:4156. https://doi.org/10.3390/ijerph16214156

76. Hendriks MMWB, Eeuwijk FA van, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, et al. Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem. 2011;30:1685-98. https://doi.org/10.1016/j.trac.2011.04.019

Article Metrics
79 Views 24 Downloads 103 Total

Year

Month

Related Search

By author names