Natural products as antimicrobials: An exploratory overview of current research and future perspectives

Sambamoorthy Unnam Mohammed Gayasuddin Mouid Renuka Devi Thota Jayasri Bantaram Nasreen Sulthana Gayatri Devi Pilli Venkataiah Gudise   

Open Access   

Published:  Apr 20, 2025

DOI: 10.7324/JAPS.2025.224409
Abstract

The emergence of antibiotic-resistant bacteria highlights the key magnitude of developing novel antimicrobials. Novel antimicrobials can be acquired from natural antimicrobials such as plants or herbs or their byproducts, animals, bacteria, algae, and mushrooms, which are officially recognized in India and consume (80%) 1.1 billion World Health Organization (WHO). New cultivation, genomic engineering techniques, and modern approaches are developed to generate novel narrow-spectrum antimicrobials. The review focuses on the safety and efficacy of several well-studied natural antimicrobials, some unique culture techniques, and current approaches to new antimicrobial development. It also discusses drivers, mechanisms of antimicrobial resistance (AMR), and strategies for reducing AMR. A conclusion is made on the fact that natural products are still an important source of novel antimicrobial agents and are particularly recommended by WHO due to their safety and efficacy and several positive health benefits. Furthermore, this review highlights important knowledge gaps and suggests future research to design chemically and structurally novel antimicrobials from natural products. Promoting cooperation between scientists, medical professionals, and decision-makers, we may use natural product capabilities fully to counter microbiological hazards and improve worldwide health results. The application of nanotechnology greatly enhanced the effectiveness of naturally derived antimicrobials against several microbial diseases.


Keyword:     Antimicrobial resistance (AMR) natural antimicrobials modern approaches


Citation:

Unnam S, Mouid MG, Thota RD, Bantaram J, Sulthana N, Pilli GD, Gudise V. Natural products as antimicrobials: An exploratory overview of current research and future perspectives. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.224409

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Modern trends in natural antibiotic discovery. Life. 2023;13(5):1073. https://doi.org/10.3390/life13051073

2. Bernal FA, Hammann P, Kloss F. Natural products in antibiotic development: is the success story over?. Curr Opin Biotechnol. 2022;78:102783. https://doi.org/10.1016/j.copbio.2022.102783

3. Atanasov AG, Zotchev SB, Dirsch VM. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200-16. https://doi.org/10.1038/s41573-020-00114-z

4. WHO. Antimicrobial resistance. Geneva: WHO; 2023.

5. Moloney MG. Natural products as a source for novel antibiotics. Trends Pharmacol. Sci. 2016;37(8):689-701. https://doi.org/10.1016/j.tips.2016.05.001

6. Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46:412-29. https://doi.org/10.1016/j.foodcont.2014.05.047

7. Nathan C, Cars O. Antibiotic resistance--problems, progress, and prospects. N Engl J Med. 2014;371(19):1761-3. https://doi.org/10.1056/NEJMp1408040

8. Pandey MM, Rastogi S, Rawat AKS. Indian herbal drug for general healthcare: an overview. Internet J Altern Med. 2008;6:1-3. https://doi.org/10.5580/1c51

9. Narayana A, Subhose V. Standardization of Ayurv?edic formulations: a scientific review. Bull Indian Inst Hist Med Hyderabad. 2005;35(1):21-32. https://doi.org/10.1177/037698360503200102

10. Belay B, Belachew B, Habitamu D. Review on application and management of medicinal plants for the livelihood of the local community. J Resour Dev Manage. 2016;22:33-9.

11. Salam N, Xian WD, Asem MD, Xiao M, Li WJ. From ecophysiology to cultivation methodology: filling the knowledge gap between uncultured and cultured microbes. Mar Life Sci Technol. 2021;3:132-47. https://doi.org/10.1007/s42995-020-00064-w

12. Mu DS, Ouyang Y, Chen GJ, Du ZJ. Strategies for culturing active/ dormant marine microbes. Mar Life Sci Technol. 2021;3:121-31. https://doi.org/10.1007/s42995-020-00053-z

13. Moore BS, Carter GT, Brönstrup M. Editorial: are natural products the solution to antimicrobial resistance? Nat Prod Rep. 2017;34(7):685-6. https://doi.org/10.1039/C7NP90026K

14. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057-98. https://doi.org/10.1016/S1473-3099(13)70318-9

15. WHO. WHO Traditional medicine strategy: 2014-2023. Essential medicines and health products 2013. Geneva: WHO; 2013.

16. Tilburt JC, Kaptchuk TJ. Herbal medicine research and global health: an ethical analysis. Bull World Health Organ. 2008;86(8):577-656. https://doi.org/10.2471/BLT.08.056366

17. Martins E. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2013;4:177. https://doi.org/10.3389/fphar.2013.00177

18. Yuan R, Lin Y. Traditional Chinese medicine: an approach to scientific proof 30 and clinical validation. Pharmacol Ther. 2000;86:191-8. https://doi.org/10.1016/S0163-7258(00)00039-5

19. Gagnier JJ, Boon H, Rochon P, Moher D, Barnes J. Reporting randomized controlled trials of herbal interventions: an elaborated CONSORT statement. Ann Intern Med. 2006;144:364-7. https://doi.org/10.7326/0003-4819-144-5-200603070-00013

20. Lam TP. Strengths and weaknesses of traditional Chinese medicine and Western medicine in the eyes of some Hong Kong Chinese. J Epidemiol Community Health 2001;55:762-5. https://doi.org/10.1136/jech.55.10.762

21. Mi MK, Soobin J, Jeeyoun J. Herbal medicines for metabolic diseases with blood stasis. Medicine 2019;98:8:e14543. https://doi.org/10.1097/MD.0000000000014543

22. Haidan Y, Qianqian M, Li Y, Guangchun P. Traditional medicine and modern medicine from natural products. Molecules. 2016;21:559. https://doi.org/10.3390/molecules21050559

23. Joshi K, Ghodke K, Patwardhan B. Traditional medicine to modern pharmacogenomics: Ayurveda Prakriti type and CYP2C19 gene polymorphism associated with the metabolic variability. Evid Based Complement Alternat Med. 2011;2011:249528. https://doi.org/10.1093/ecam/nep206

24. Akinyemi O, Oyewole SO, Jimoh KA. Medicinal plants and sustainable human health: a review. Horticult Int J. 2018;2(4):194-195. https://doi.org/10.15406/hij.2018.02.00051

25. Debas TH, Laxminarayan R, Straus SE. Complementary and alternative medicine. In: Jamison DT, Breman JG, Measham AR, et al. Disease control priorities in development countries. New York, NY: Oxford University Press, pp. 1281-91, 2nd ed; 2006. https://doi.org/10.1596/978-0-8213-6179-5/Chpt-69

26. Kala CP. Assessment of species rarity. Curr Sci. 2004;86(8):1058-9.

27. Iris FFB, Wacht S. Herbal medicine: biomolecular and clinical aspects. 2nd ed. Milton Park: Taylor and Francis; 2011.

28. Cooper EL. CAM, eCAM, bioprospecting: the 21st century pyramid. Evid Based Complement Alternat Med. 2005;2(2):125-7. https://doi.org/10.1093/ecam/neh094

29. Gavaghan H. Koop may set up new centre for alternative medicine. Nature. 1994;370(6491):591. https://doi.org/10.1038/370591a0

30. Fatemeh JK, Zahra L, Hossein AK. Medicinal plants: past history and future perspective. J Herbmed Pharmacol. 2018;7(1):1-7. https://doi.org/10.15171/jhp.2018.01

31. Jon CT, Kaptchuk TJ. Herbal medicine research and global health: an ethical analysis. Bull World Health Organ. 2008;86:594-9. https://doi.org/10.2471/BLT.07.042820

32. WHO. WHO Global report on traditional and complementary medicine. Geneva: WHO; 2019.

33. Chandrakant K, Arun G, Satyajyoti K, Shefali K. Drug discovery from plant sources: an integrated approach. Ayu. 2012:33(1):10-9. https://doi.org/10.4103/0974-8520.100295

34. Sung SH, Kim KH, Jeon BT, Cheong SH, Park JH, Kim DH, et al. Antibacterial and antioxidant activities of tannins extracted from 1539 agricultural by-products. J Med Plants Res. 2012;6:3072-9. https://doi.org/10.5897/JMPR11.1575

35. Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007;73:461-7. https://doi.org/10.1055/s-2007-967167

36. Bauman KD, Butler KS, Moore BS, Chekan JR. Genome mining methods to discover bioactive natural products. Nat Prod Rep. 2021;38:2100-29. https://doi.org/10.1039/D1NP00032B

37. Agourram A, Ghirardello D, Rantsiou K, Zeppa G, Belviso S, Romane A, et al. Phenolic content, antioxidant potential and antimicrobial activities of fruit and vegetable by-product extracts. Int J Food Prop. 2013;16:968-79. https://doi.org/10.1080/10942912.2011.576446

38. Taveira M, Silva LS, Vale-Silva LS, Pinto EN, Valentão PC, Ferreres F, et al. Lycopersicon esculentum seeds: 1547 an industrial byproduct as an antimicrobial agent. J Agric Food Chem. 2010;58(17):9529-36. https://doi.org/10.1021/jf102215g

39. Sagdic O, Ozturk I, Yilmaz MT, Yetim H. Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. J Food Sci. 2011;76(7):M515-M521. https://doi.org/10.1111/j.1750-3841.2011.02323.x

40. Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L, Pereira JA. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem Toxicol. 2008;46(7):2326-31. https://doi.org/10.1016/j.fct.2008.03.017

41. Perez KL, Taylor TM, Taormina PJ. Competitive research and development on antimicrobials and food preservatives. Microbiol Res Dev Food Ind. 2012; 2012:109.

42. Tiwari BK, Valdramidis VP, O'Donnell CP, Muthukumarappan K, Bourke P, Cullen P. Application of natural antimicrobials for food preservation. J Agric Food Chem. 2009;57(14):5987-6000. https://doi.org/10.1021/jf900668n

43. Ko K, Mendonca A, Ahn D. Influence of zinc, sodium bicarbonate, and citric acid on the antibacterial activity of ovotransferrin against Escherichia coli O157: H7 and Listeria monocytogenes in model systems and ham. Poult Sci. 2008;87:2660-70. https://doi.org/10.3382/ps.2007-00503

44. Burrowes O, Hadjicharalambous C, Diamond G, Lee TC. Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food applications. J Food Sci. 2004;69:646-52. https://doi.org/10.1111/j.1365-2621.2004.tb13373.x

45. Potter R, Truelstrup Hansen L, Gill TA. A. Inhibition of foodborne 1417 bacteria by native and modified protamine: Importance of electrostatic interactions. Int J Food Microbiol. 2005;103:23-34. https://doi.org/10.1016/j.ijfoodmicro.2004.12.019

46. Juneja VK, Dwivedi HP, Yan X. Novel natural food antimicrobials. Annu Rev Food Sci Technol. 2012;3:381-403. https://doi.org/10.1146/annurev-food-022811-101241

47. Siamansouri M, Mozaffari S, Alikhani FE. Bacteriocins and lactic acid bacteria. J Biol. 2013;2:227-34.

48. Gong H, Meng X, Wang H. Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1. 0391 isolated from "Jiaoke", a traditional fermented cream from China. Food Control. 2010;21:89-96. https://doi.org/10.1016/j.foodcont.2009.04.005

49. Lucera A, Costa C, Conte A, Del Nobile MA. Food applications 1308 natural antimicrobial compounds. Front Microbiol. 2012;3:287. https://doi.org/10.3389/fmicb.2012.00287

50. Demirel Z, Yilmaz-Koz FF, Karabay-Yavasoglu UN, Ozdemir G, Sukatar A. Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. J Serb Chem Soc. 2009;74:619-28. https://doi.org/10.2298/JSC0906619D

51. Cavallo RA, Acquaviva MI, Stabili L, Cecere E, Petrocelli A, Narracci M. Antibacterial activity of marine macroalgae against fish pathogenic Vibrio species. Cent Eur J Biol. 2013;8:646-53. https://doi.org/10.2478/s11535-013-0181-6

52. Bhagavathy S, Sumathi P, Jancy Sherene Bell I. Green algae Chlorococcum humicola a new source of bioactive compounds with antimicrobial activity. Asian Pac J Trop Biomed. 2011;1:S1-S7. https://doi.org/10.1016/S2221-1691(11)60111-1

53. Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Gandhimathi R, Lipton AP Antimicrobial potential and seasonality of red algae collected from the southwest coast of India tested against shrimp, human and phytopathogens. Ann Microbiol. 2009;59:207-19. https://doi.org/10.1007/BF03178319

54. Bala N, Aitken EA, Cusack A, Steadman KJ. Antimicrobial potential of australian macrofungi extracts against foodborne and other pathogens. Phytother Res. 2012;26(3):465-9. https://doi.org/10.1002/ptr.3563

55. Kitzberger CSG, Smânia Jr A, Pedrosa RC, Ferreira SR. Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids. J Food Eng. 2007;80:631-8. https://doi.org/10.1016/j.jfoodeng.2006.06.013

56. Barros L, Calhelha RC, Vaz JA, Ferreira IC, Baptista P, Estevinho LM. Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. Eur Food Res Technol. 2007;225:151-6. https://doi.org/10.1007/s00217-006-0394-x

57. Öztürk M, Duru ME, Kivrak ?, Mercan-Do?an N, Türkoglu A, Özler MA. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem Toxicol. 2001;49:1353-60. https://doi.org/10.1016/j.fct.2011.03.019

58. Tajkarimi M, Ibrahim S, Cliver D. Antimicrobial herb and spice compounds in food. Food Control. 2010;21(9):1199-218. https://doi.org/10.1016/j.foodcont.2010.02.003

59. Hayek SA, Gyawali R, Ibrahim SA. Antimicrobial natural products. In: Méndez-Vilas A Editor. Microbial pathogens and strategies for combating them: science, technology and education. Norristown, PA: Formatex Research Center. 2013;V(2), pp. 910-21.

60. Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 2012;7(8):979-90. https://doi.org/10.2217/fmb.12.68

61. Negi PS. Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol. 2012;156(1);7-17. https://doi.org/10.1016/j.ijfoodmicro.2012.03.006

62. Ciocan ID, B?ra I. Plant products as an-timicrobial agents. Universitatii ale ?tiin?ifice Analele Alexandru Ioan Cuza. 2007; Tom VIII.

63. Lai P, Roy J. Antimicrobial and chemopreventive properties of herbs and spices. Curr Med Chem. 2004;11(11):1451-60. https://doi.org/10.2174/0929867043365107

64. Ultee A, Bennik MHJ, MoezelaarR. The phenolic hydroxyl group of carvacrol is essential for action against the foodborne pathogen Bacillus cereus. Applied and environmental microbiology. 2002;68,(4):1561-1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002

65. Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial 1110 activity of plant volatile oils. J Appl Microbiol. 2000;88(2):308-16. https://doi.org/10.1046/j.1365-2672.2000.00969.x

66. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri1003 industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99(1):191-203. https://doi.org/10.1016/j.foodchem.2005.07.042

67. Engels C, Knödler M, Zhao YY, Carle R, Gänzle MG, Schieber A. Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. J Agric Food Chem. 2009;57(17):7712-8. https://doi.org/10.1021/jf901621m

68. Figuerola F, Hurtado MA, Estévez AMA, Chiffelle I, Asenjo F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 2005;91(3):395-401. https://doi.org/10.1016/j.foodchem.2004.04.036

69. Al-Zoreky N. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int J Food Microbiol. 2009;134(3):244-8. https://doi.org/10.1016/j.ijfoodmicro.2009.07.002

70. Negi P, Jayaprakasha G. Antioxidant and antibacterial activities of Punica granatum peel extracts. J Food Sci. 2003;68(4):1473-7. https://doi.org/10.1111/j.1365-2621.2003.tb09669.x

71. Machado T, Pinto A, Pinto M, Leal I, Silva M, Amaral A, et al. In vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2003;21(3):279-84. https://doi.org/10.1016/S0924-8579(02)00349-7

72. Mandalari G, Bennett R, Bisignano G, Trombetta D, Saija A, Faulds C, et al. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol. 2007;103(6):2056-64. https://doi.org/10.1111/j.1365-2672.2007.03456.x

73. Fattouch S, Caboni P, Coroneo V, Tuberoso CI, Angioni A, Dessi S, et al. Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem. 2007;55(3):963-9. https://doi.org/10.1021/jf062614e

74. Abdalla AE, Darwish SM, Ayad EH, El-Hamahmy RM. Egyptian mango by product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chem. 2007;103(4):1141-52. https://doi.org/10.1016/j.foodchem.2006.10.026

75. Kabuki T, Nakajima H, Arai M, Ueda S, Kuwabara Y, Dosako SI. Characterization of novel antimicrobial compounds from mango (Mangifera indica L.) kernel seeds. Food Chem. 2000;71(1):61-6. https://doi.org/10.1016/S0308-8146(00)00126-6

76. Kanatt SR, Arjun K, Sharma A. Antioxidant and antimicrobial activity of legume hulls. Food Res Int. 2011;44(10):3182-7. https://doi.org/10.1016/j.foodres.2011.08.022

77. Adebowale B, Ogunjobi M, Olubamiwa O, Olusola-Taiwo M, Omidiran V. Quality improvement and value addition of processed fish (Clarias gariepinus) using phenolic compounds in coffee pulp smoke. Int Res J Agric Sci Soil Sci. 2012;2(13):520-4.

78. Lönnerdal, B. Biological effects of novel bovine milk fractions. Nestle Nutr Workshop Ser Pediatr Program. 2011;67:41-54. https://doi.org/10.1159/000325574

79. USDA-FSIS. Safe and suitable ingredients used in the production of meat, poultry, and egg products. FSIS Dir. 7120.1 Revision 2. Annapolis, MA: USDA-FSIS; 2010.

80. Al-Nabulsi AA, Holley RA. Effect of bovine lactoferrin against Carnobacterium viridans. Food Microbiol. 2005;22(2):179-87. https://doi.org/10.1016/j.fm.2004.06.001

81. Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma- Guerrero J, Jansson HB, et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr Polym. 2006;64(1):66-72. https://doi.org/10.1016/j.carbpol.2005.10.021

82. Chung YC, Yeh JY, Tsai CF. Antibacterial characteristics and activity of water-soluble chitosan derivatives prepared by the Maillard reaction. Molecules. 2011;16(10):8504-14. https://doi.org/10.3390/molecules16108504

83. Cegielska-Radziejewska R, Lesnierowski G, Kijowski J. Antibacterial activity of hen egg white lysozyme modified by thermochemical technique. Eur Food Res Technol. 2009;228(5):841-5. https://doi.org/10.1007/s00217-008-0997-5

84. Suthiluk S, Kamhangwong D, Benjakul S. Antimicrobial activity of some potential active compounds against food spoilage microorganisms. Afr J Biotechnol. 2012;11(74):13914-21. https://doi.org/10.5897/AJB12.1400

85. Schanbacher F, Talhouk R, Murray F, Gherman L, Willett L. Milk-borne bioactive peptides. Int Dairy J. 1998;8(5-6):393-403. https://doi.org/10.1016/S0958-6946(98)00062-4

86. McCann K, Shiell B, Michalski W, Lee A, Wan J, Roginski H, et al. Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein. Int Dairy J. 2006;16(4):316-23. https://doi.org/10.1016/j.idairyj.2005.05.005

87. Szwajkowska M, Wolanciuk A, Bar?owska J, Król J, Litwiñczuk Z. Bovine milk proteins as the source of bioactive peptides influencing the consumers' immune system-a review. Anim Sci Pap Rep. 2011;29(4):269-80.

88. Arqués JL, Fernández J, Gaya P, Nuñez M, Rodríguez E, Medina M. Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. Int J Food Microbiol. 2004;95(2):225-9. https://doi.org/10.1016/j.ijfoodmicro.2004.03.009

89. Rajendran K, Nagappan R, Ramamurthy K. Short Communication A study on the bactericidal effect of nisin purified from Lactococcus lactis. Ethiop J Biol Sci. 2013;10:1.

90. Arqués JL, Rodríguez E, Nuñez M, Medina M. Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control. 2011;22(3):457-61. https://doi.org/10.1016/j.foodcont.2010.09.027

91. Bian L, Molan AL, Maddox I, Shu Q. Antimicrobial activity of Lactobacillus reuteri DPC16 supernatants against selected food borne pathogens. World J Microbiol Biotechnol. 2011;27(4):991-8. https://doi.org/10.1007/s11274-010-0543-z

92. Willis WL, King K, Iskhuemhen OS, Ibrahim SA. Administration of mushroom extract to broiler chickens for bifidobacteria enhancement and Salmonella reduction. J Appl Poult Res. 2009;18(4):658-64. https://doi.org/10.3382/japr.2008-00101

93. Guedes AC, Barbosa CR, Amaro HM, Pereira CI, Malcata FX. Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Int J Food Sci Technol. 2011;46(4):862-6. https://doi.org/10.1111/j.1365-2621.2011.02567.x

94. Kalyoncu F, Oskay M, Sa?lam H, Erdo?an TF, Tamer AÜ. Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. J Med Food. 2010;13(2):415-9. https://doi.org/10.1089/jmf.2009.0090

95. Ramesh C, Pattar MG. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Phytother Res. 2010;2(2):107. https://doi.org/10.4103/0974-8490.62953

96. Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009;27(2):82-9. https://doi.org/10.1016/j.tibtech.2008.10.010

97. Zou Y, Lee HY, Seo YC, Ahn J. Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against Foodborne Pathogens. J Food Sci. 2012;77(3):M165-70. https://doi.org/10.1111/j.1750-3841.2011.02580.x

98. Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I, Chareonpornwattana S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control. 2012;24(1):184-90. https://doi.org/10.1016/j.foodcont.2011.09.025

99. Tripathi KD. Textbook of essentials of medical pharmacology. 8th ed. Noida: Jaypee; 2019.

100. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance. London: HM Government and Wellcome Trust; 2016.

101. World Health Organization, Regional office for South-East Asia. Jaipur declaration on antimicrobial resistance. Geneva: WHO; 2011.

102. Department of Health, Department for Environment Food and Rural Affairs. UK Five Year Antimicrobial Resistance Strategy 2013 to 2018. London: Government of UK; 2013.

103. Government of India. National Action Plan on Antimicrobial Resistance (NAP-AMR) 2017-2021. New Delhi: Government of India; 2017.

104. Rrang and Dales. Textbook of pharmacology. 8th ed. Amsterdam: Elsevier; 2015.

105. Taneja N, Sharma M. Antimicrobial resistance in the environment: The Indian scenario. Indian J Med Res. 2019;149(2):119-28. https://doi.org/10.4103/ijmr.IJMR_331_18

106. Kahn LH. Antimicrobial resistance: a one health perspective. Trans R Soc Trop Med Hyg. 2017;111:255-60. https://doi.org/10.1093/trstmh/trx050

107. Gandra S, Joshi J, Trett A, Lamkang A, Laxminarayan R. Scoping report on antimicrobial resistance in India. Washington, DC: Center for Disease Dynamics, Economics and Policy; 2017. Available from: http://www.dbtindia.nic.in/wp-content/uploads/ ScopingreportonAntimicrobialresistanceinIndia.pdf (accessed April 15, 2017).

108. Chaudhry D, Tomar P. Antimicrobial resistance: the next big pandemic. Int J Community Med Public Health. 2017;4:2632-6. https://doi.org/10.18203/2394-6040.ijcmph20173306

109. Swaminathan S, Prasad J, Dhariwal AC, Guleria R, Misra MC, Malhotra R, et al. Strengthening infection prevention and control and systematic surveillance of healthcare associated infections in India. BMJ. 2017;358:j3768. https://doi.org/10.1136/bmj.j3768

110. Laxminarayan R, Matsoso P, Pant S, Brower C, Røttingen JA, Klugman K, et al. Access to effective antimicrobials: A worldwide challenge. Lancet. 2016;387:168-75. https://doi.org/10.1016/S0140-6736(15)00474-2

111. Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis. 2011;11:692-701. https://doi.org/10.1016/S1473-3099(11)70054-8

112. Lundborg CS, Tamhankar AJ. Antibiotic residues in the environment of South East Asia. BMJ. 2017;358:j2440. https://doi.org/10.1136/bmj.j2440

113. Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612-6. https://doi.org/10.1038/nature13377

114. Chereau F, Opatowski L, Tourdjman M, Vong S. Risk assessment for antibiotic resistance in South East Asia. BMJ. 2017;358:j3393. https://doi.org/10.1136/bmj.j3393

115. Singer AC, Shaw H, Rhodes V, Hart A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol. 2016;7:1728. https://doi.org/10.3389/fmicb.2016.01728

116. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14:742-50. https://doi.org/10.1016/S1473-3099(14)70780-7

117. Ambesh P, Ambesh SP. Open defecation in India: a major health hazard and hurdle in infection control. J Clin Diagn Res. 2016;10:IL01-2. https://doi.org/10.7860/JCDR/2016/20723.8098

118. Bain R, Cronk R, Hossain R, Bonjour S, Onda K, Wright J, et al. Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Trop Med Int Health. 2014;19:917-27. https://doi.org/10.1111/tmi.12334

119. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112:5649-54. https://doi.org/10.1073/pnas.1503141112

120. Hao H, Cheng G, Iqbal Z, Ai X, Hussain HI, Huang L, et al. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol. 2014;5:288. https://doi.org/10.3389/fmicb.2014.00288

121. Sahu R, Saxena P. Antibiotics in chicken meat. PML/PR-48/2014. New Delhi, India: Centre for Science and Environment, Centre for Science and Environment, India; 2014. Available from: https:// cdn.cseindia.org/userfiles/Antibiotics%20in%20Chicken_Lab%20 Report_Final%2029%20July.pdf (accessed April 15, 2017).

122. Goutard FL, Bordier M, Calba C, Erlacher-Vindel E, Góchez D, de Balogh K, et al. Antimicrobial policy interventions in food animal production in South East Asia. BMJ. 2017;358:j3544. https://doi.org/10.1136/bmj.j3544

123. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015;16:964. https://doi.org/10.1186/s12864-015-2153-5

124. Rehman MS, Rashid N, Ashfaq M, Saif A, Ahmad N, Han JI, et al. Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere. 2015;138:1045-55. https://doi.org/10.1016/j.chemosphere.2013.02.036

125. Lata P, Ram S, Shanker R. Multiplex PCR based genotypic characterization of pathogenic vancomycin resistant Enterococcus faecalis recovered from an Indian river along a city landscape. Springerplus. 2016;5:1199. https://doi.org/10.1186/s40064-016-2870-5

126. Mutiyar PK, Mittal AK. Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges. Environ Sci Pollut Res. 2014;21:7723-36. https://doi.org/10.1007/s11356-014-2702-5

127. Diwan V, Tamhankar AJ, Khandal RK, Sen S, Aggarwal M, Marothi Y, et al. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health. 2010;10:414. https://doi.org/10.1186/1471-2458-10-414

128. Duong HA, Pham NH, Nguyen HT, Hoang TT, Pham HV, Pham VC, et al. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere. 2008;72:968-73. https://doi.org/10.1016/j.chemosphere.2008.03.009

129. Wichmann F, Udikovic-Kolic N, Andrew S, Handelsman J. Diverse antibiotic resistance genes in dairy cow manure. MBio. 2014;5:e01017. https://doi.org/10.1128/mBio.01017-13

130. Clarke BO, Smith SR. Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int. 2011;37:226-47. https://doi.org/10.1016/j.envint.2010.06.004

131. Henriksson PJ, Troell M, Rico A. Antimicrobial use in aquaculture: some complementing facts. Proc Natl Acad Sci U S A. 2015;112:E3317. https://doi.org/10.1073/pnas.1508952112

132. World Health Organization. Antimicrobial resistance: global report on surveillance. Geneva: WHO; 2014.

133. Government of India. National Action Plan on Antimicrobial Resistance (NAP-AMR). New Delhi: Government of India; 2017.

134. Ministry of Health and Family Welfare, Government of India. National Health Policy. New Delhi: MOHFW; 2017.

135. Government of India. Food Safety and Standards Authority of India. Annual Report 2017. New Delhi: Ministry of Health and Family Welfare, Government of India; 2017.

136. Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, et al. Gausemycins A,B: cyclic lipoglycopeptides from Streptomyces sp. Angew Chem Int Ed. 2021;60:18694-703. https://doi.org/10.1002/anie.202104528

137. Monciardini P, Iorio M, Maffioli S, Sosio M, Donadio S. Discovering new bioactive molecules from microbial sources. Microb Biotechnol. 2014;7:209-20. https://doi.org/10.1111/1751-7915.12123

138. Boruta T. A Bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World J Microbiol Biotechnol. 2021;37:171. https://doi.org/10.1007/s11274-021-03141-z

139. Arora D, Gupta P, Jaglan S, Roullier C, Grovel O, Bertrand S. Expanding the chemical diversity through microorganisms co-culture: current status and outlook. Biotechnol Adv. 2020;40:107521. https://doi.org/10.1016/j.biotechadv.2020.107521

140. Caudal F, Tapissier-Bontemps N, Edrada-Ebel RA. Impact of co-culture on the metabolism of marine microorganisms. Mar Drugs. 2022;20:153. https://doi.org/10.3390/md20020153

141. Peng XY, Wu JT, Shao CL, Li ZY, Chen M, Wang CY. Co-culture: Stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms. Mar Life Sci Technol. 2021;3:363-74. https://doi.org/10.1007/s42995-020-00077-5

142. Jung D, Liu L, He S. Application of in situ cultivation in marine microbial resource mining. Mar Life Sci Technol. 2021;3:148-61. https://doi.org/10.1007/s42995-020-00063-x

143. Kaeberlein T, Lewis K, Epstein SS. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science. 2002;296:1127-9. https://doi.org/10.1126/science.1070633

144. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, et al. Use of ICHIP for high-throughput in situ cultivation of "uncultivable" microbial species. Appl Environ Microbiol. 2010;76:2445-50. https://doi.org/10.1128/AEM.01754-09

145. Gavrish E, Bollmann A, Epstein S, Lewis K. A Trap for in situ cultivation of filamentous actinobacteria. J Microbiol Meth. 2008;72:257-62. https://doi.org/10.1016/j.mimet.2007.12.009

146. Ben-Dov E, Kramarsky-Winter E, Kushmaro A. An in situ method for cultivating microorganisms using a double encapsulation technique: In situ method for cultivating microorganisms. FEMS Microbiol Ecol. 2009;68:363-71. https://doi.org/10.1111/j.1574-6941.2009.00682.x

147. Jung D, Liu B, He X, Owen JS, Liu L, Yuan Y, et al. Accessing previously uncultured marine microbial resources by a combination of alternative cultivation methods. Microb Biotechnol. 2021;14:1148-58. https://doi.org/10.1111/1751-7915.13782

148. Davidson SL, Niepa THR. Micro-technologies for assessing microbial dynamics in controlled environments. Front Microbiol. 2022;12:745835. https://doi.org/10.3389/fmicb.2021.745835

149. Pope E, Cartmell C, Haltli B, Ahmadi A, Kerr RG. Microencapsulation and in situ incubation methodology for the cultivation of marine bacteria. Front Microbiol. 2022;13:958660. https://doi.org/10.3389/fmicb.2022.958660

150. Terekhov SS, Eliseev IE, Ovchinnikova LA, Kabilov MR, Prjibelski AD, Tupikin AE, et al. Liquid drop of DNA libraries reveals total genome information. Proc. Natl. Acad. Sci. USA 2020;117:27300-6. https://doi.org/10.1073/pnas.2017138117

151. Wollein Waldetoft K, Brown SP. Evolving antibiotic spectrum. Proc Natl Acad Sci USA. 2022;119:e2214267119. https://doi.org/10.1073/pnas.2214267119

152. Johnston CW, Badran AH. Natural and engineered precision antibiotics in the context of resistance. Curr Opin Chem Biol. 2022;69:102160. https://doi.org/10.1016/j.cbpa.2022.102160

153. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529:336-43 . https://doi.org/10.1038/nature17042

154. Avis T, Wilson FX, Khan N, Mason CS, Powell DJ. Targeted microbiome-sparing antibiotics. Drug Discov Today. 2021;26:2198- 03. https://doi.org/10.1016/j.drudis.2021.07.016

155. Schorn MA, Verhoeven S, Ridder L, Huber F, Acharya DD, Aksenov AA, et al. A community resource for paired genomic and metabolomic data mining. Nat Chem Biol. 2021;17:363-8. https://doi.org/10.1038/s41589-020-00724-z

156. Louwen JJ, Medema MH, van der Hooft JJ. Enhanced correlation-based linking of biosynthetic gene clusters to their metabolic products through chemical cass matching. Microbiome 2023;11:13. https://doi.org/10.1186/s40168-022-01444-3

157. Muller E, Algavi YM, Borenstein E. The gut microbiome-metabolome dataset collection: A curated resource for integrative meta-analysis. NPJ Biofilms Microbiom. 2022;8:79. https://doi.org/10.1038/s41522-022-00345-5

158. Hou P, Nowak VV, Taylor CJ, Calcott MJ, Knight A, Owen JG. A genomic survey of the natural product biosynthetic potential of actinomycetes isolated from New Zealand lichens. mSystems. 2023;8:e01030-22. https://doi.org/10.1128/msystems.01030-22

159. Tenebro CP, Trono DJVL, Balida LAP, Bayog LKA, Bruna JR, Sabido EM, et al. Synergy between genome mining, metabolomics, and bioinformatics uncovers antibacterial chlorinated carbazole alkaloids and their biosynthetic gene cluster from Streptomyces tubbatahanensis sp. Nov., a novel actinomycete isolated from Sulu Sea, Philippines. Microbiol Spectr. 2023;11:e03661-22. https://doi.org/10.1128/spectrum.03661-22

160. Milshteyn A, Colosimo DA, Brady SF. Accessing bioactive natural products from the human microbiome. Cell Host Microbe. 2018;23:725-36. https://doi.org/10.1016/j.chom.2018.05.013

161. Chiumento S, Roblin C, Kieffer-Jaquinod S, Tachon S, Leprètre C, Basset C, et al. Ruminococcin C, a promising antibiotic produced by a human gut symbiont. Sci Adv. 2019;5:eaaw9969. https://doi.org/10.1126/sciadv.aaw9969

162. Zhang Q, Ren JW, Wang W, Zhai J, Yang J, Liu N, et al. A versatile transcription-translation in one approach for activation of cryptic biosynthetic gene clusters. ACS Chem Biol. 2020;15:2551-7. https://doi.org/10.1021/acschembio.0c00581

163. Yoshimura A, Covington BC, Gallant É, Zhang C, Li A, Seyedsayamdost MR. Unlocking cryptic metabolites with mass spectrometry-guided transposon mutant selection. ACS Chem Biol. 2020;15:2766-74. https://doi.org/10.1021/acschembio.0c00558

164. Covington BC, Seyedsayamdost MR. Guidelines for metabolomics-guided transposon mutagenesis for microbial natural product discovery. Methods Enzymol. 2022;66:305-23. https://doi.org/10.1016/bs.mie.2021.11.020

165. Hudson MA, Lockless SW. Elucidating the mechanisms of action of antimicrobial agents. mBio. 2022;13:e02240-21. https://doi.org/10.1128/mbio.02240-21

166. Rütten A, Kirchner T, Musiol-Kroll EM. Overview on strategies and assays for antibiotic discovery. Pharmaceuticals. 2022;15:1302. https://doi.org/10.3390/ph15101302

167. Sergiev PV, Osterman IA, Golovina AY, Andreyanova ES, Laptev IG, Pletnev PI, et al. Application of reporter strains for screening of new antibiotics. Biochem Moscow Suppl Ser B. 2016;10:293-9. https://doi.org/10.1134/S1990750816040065

Article Metrics
71 Views 25 Downloads 96 Total

Year

Month

Similar Articles

Related Search

By author names