Piperazine, norbornene, and their derivatives are valuable scaffolds in rational drug design, with promising therapeutic applications in various diseases, including cancer. Given that hybridization of privileged structures is a highly effective strategy in drug development, we synthesized piperazine derivatives containing a norbornenyl fragment using a straightforward synthetic pathway. Eight synthesized norbornenylpiperazine compounds (4a–4h) were evaluated for their potential interactions with target proteins, along with an in silico assessment of their absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles. In vitro cytotoxicity and genotoxicity were also assessed using Michigan Cancer Foundation (MCF)-7 breast cancer cell lines, which express the relevant target receptors. High affinity was observed for the androgen receptor, peroxisome proliferator-activated receptor gamma, and glucocorticoid receptors, with a greater number of norbornenylpiperazine compounds showing strong affinity for the latter one. The drug-likeness and ADMET properties of these compounds revealed favorable pharmacokinetic profiles and moderate toxicity. Notably, compounds 4a, 4e, and 4h significantly inhibited MCF-7 cell proliferation, underscoring their potential as cancer therapeutics. Importantly, none of the compounds induced DNA damage at non-cytotoxic concentrations, which, together with in silico predictions, indicates a low likelihood of genotoxicity. These findings provide a foundation for further development and functional evaluation of selected synthesized norbornenylpiperazine compounds.
Badalyan K, Babayan N, Kalita E, Grigoryan N, Sarkisyan N, Grigoryan R, Arakelov G, Shahkhatuni A, Attaryan H, Mkrtchyan D, Khachatryan H, Khondkaryan L. Synthesis, in silico, and in vitro pharmacological evaluation of norbornenylpiperazine derivatives as potential ligands for nuclear hormone receptors. J Appl Pharm Sci. 2025. Online First. https://doi.org/10.7324/JAPS.2025.230239
1. Avdeef A. Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem. 2001;1(4):277–351. doi: https://doi.org/10.2174/1568026013395100
2. Vogel P, Cossy J, Plumet J, Arjona O. Derivatives of 7-oxabicyclo[2.2.1]heptane in nature and as useful synthetic intermediates. Tetrahedron. 1999;55(48):13521–642. doi: https://doi.org/10.1016/S0040-4020(99)00845-5
3. Spande TF, Garraffo HM, Edwards MW, Yeh HJC, Pannell L, Daly JW. Epibatidine: a novel (chloropyridyl)azabicyclo heptane with potent analgesic activity from an Ecuadoran poison frog. J Am Chem Soc. 1992;114(9):3475–78. doi: https://doi.org/10.1021/ja00035a048
4. Chang LL, Truong Q, Doss GA, MacCoss M, Lyons K, McCauley E, et al. Highly constrained bicyclic VLA-4 antagonists. Bioorg Med Chem Lett. 2007;7(3):597–601. doi: https://doi.org/10.1016/j.bmcl.2006.11.011
5. Lautens M, Han W. Divergent selectivity in MgI2-mediated ring expansions of methylenecyclopropyl amides and imides. J Am Chem Soc. 2002;124(22):6312–16. doi: https://doi.org/10.1021/ja011110o
6. Arjona O, Csákÿ AG, Plumet J. Sequential metathesis in oxa- and azanorbornene derivatives. Eur J Org Chem. 2003;2003(4):611–22. doi: https://doi.org/10.1002/ejoc.200390100
7. Calvo-Martín G, Plano D, Martínez-Sáez N, Aydillo C, Moreno E, Espuelas S, et al. Norbornene and related structures as scaffolds in the search for new cancer treatments. Pharmaceuticals (Basel). 2022;15(12):1465. doi: https://doi.org/10.3390/ph15121465
8. Hossain M, Habib I, Singha K, Kumar A. FDA-approved heterocyclic molecules for cancer treatment: synthesis, dosage, mechanism of action and their adverse effect. Heliyon. 2023;10(1):e23172. doi: https://doi.org/10.1016/j.heliyon.2023.e23172
9. Zhang RH, Guo HY, Deng H, Li J, Quan ZhSh. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem. 2021;36(1):1165–97. doi: https://doi.org/10.1080/14756366.2021.1931861
10. Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin Drug Discov. 2022;17(9):969–84. doi: https://doi.org/10.1080/17460441.2022.2103535
11. Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014;57(24):10257–71024. doi: https://doi.org/10.1021/jm501100b
12. Brito AF, Moreira LKS, Menegatti R, Costa EA. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam Clin Pharmacol. 2019;33(1):13–24. doi: https://doi.org/10.1111/fcp.12408
13. Hetzer HB, Robinson RA, Bates RG. Dissociation constants of piperazinium ion and related thermodynamic quantities from 0 to 50.deg. J Phys Chem. 1968;72(6):2081–6. doi: https://doi.org/10.1021/j100852a034
14. Manallack DT. The pKa distribution of drugs: application to drug discovery. Perspect Medicin Chem. 2007;1:25–38.
15. Viegas-Junior C, Danuello A, da Silva Bolzani V, Barreiro EJ, Fraga CA. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem. 2007;14(17):1829–52. doi: https://doi.org/10.2174/092986707781058805
16. Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid drugs-A strategy for overcoming anticancer drug resistance? Molecules. 2021;26(9):2601. doi: https://doi.org/10.3390/molecules26092601
17. Rodríguez-Franco MI, Fernández-Bachiller MI, Pérez C, Hernández-Ledesma B, Bartolomé B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem. 2006;49(2):459–62. doi: https://doi.org/10.1021/jm050746d
18. Li K, Schurig-Briccio LA, Feng X, Upadhyay A, Pujari V, Lechartier B, et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J Med Chem. 2014;57(7):3126–39. doi: https://doi.org/10.1021/jm500131s
19. Ciba Geigy Corp, Southcott MR. Novel oligomers useful for making cured fibre reinforced composites, US patent, US5026871A; 1991.
20. Kami?ski K, Obniska J, Wiklik B, Atamanyuk D. Synthesis and anticonvulsant properties of new acetamide derivatives of phthalimide, and its saturated cyclohexane and norbornene analogs. Eur J Med Chem. 2011;46(9):4634–41. doi: https://doi.org/10.1016/j.ejmech.2011.07.043
21. Sakhautdinov IM, Mukhametyanova AF. Synthesis of New cyclopentenofullerenes containing a norbornene fragment. Russ J Org Chem. 2019;55(9):1275–9. doi: https://doi.org/10.1134/S1070428019090033
22. Abagyan R, Totrov M, Kuznetsov D. ICM – A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994;15(5):488–506. doi: https://doi.org/10.1002/jcc.540150503
23. Landrum, G. Rdkit: open-source cheminformatics software. [cited 2023 Apr 29] Available from: https://github.com/rdkit
24. Kumar PR, Seshadri M, Jaikrishan G, Das B. Effect of chronic low dose natural radiation in human peripheral blood mononuclear cells: evaluation of DNA damage and repair using the alkaline comet assay. Mut Res. 2015;775:59–65. doi: https://doi.org/10.1016/j.mrfmmm.2015.03.011
25. Dai C, Ellisen LW. Revisiting androgen receptor signaling in breast cancer. Oncologist. 2023;28(5):383–91. doi: https://doi.org/10.1093/oncolo/oyad049
26. Ravaioli S, Maltoni R, Pasculli B, Parrella P, Giudetti AM, Vergara D, et al. Androgen receptor in breast cancer: the “5W” questions. Front Endocrinol. 2022;13:977331. doi: https://doi.org/10.3389/fendo.2022.977331
27. Brisken C. Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer. 2013:13(6):385–96. doi: https://doi.org/10.1038/nrc3518
28. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9(18):2266–78. doi: https://doi.org/10.1101/gad.9.18.2266
29. Zheng N, Chen J, Liu W, Liu J, Li T, Chen H, et al. Mifepristone inhibits ovarian cancer metastasis by intervening in SDF-1/CXCR4 chemokine axis. Oncotarget. 2017;8(35):59123–35. doi: https://doi.org/10.18632/oncotarget.19289
30. Lee O, Sullivan ME, Xu Y, Rogers C, Muzzio M, Helenowski I, et al. Selective progesterone receptor modulators in early-stage breast cancer: a randomized, placebo-controlled phase II window-of-opportunity trial using telapristone acetate. Clin Cancer Res. 2020;26(1):25–34. doi: https://doi.org/10.1158/1078-0432.CCR-19-0443
31. Liu JH, Soper D, Lukes A, Gee P, Kimble T, Kroll R, et al. Ulipristal acetate for treatment of uterine leiomyomas a randomized controlled trial. Obstet Gynecol. 2018;132(5):1241–51. doi: https://doi.org/10.1097/AOG.0000000000002942
32. Lewis JH, Cottu PH, Lehr M, Dick E, Shearer T, Rencher W, et al. Onapristone extended release: safety evaluation from phase I–II studies with an emphasis on hepatotoxicity. Drug Saf. 2020;43:1045–55. doi: https://doi.org/10.1007/s40264-020-00964-x
33. Ciebiera M, Vitale SG, Ferrero S, Vilos GA, Barra F, Caruso S, et al. Vilaprisan, a new selective progesterone receptor modulator in uterine fibroid pharmacotherapy-will it really be a breakthrough?. Curr Pharm Des. 2020;26(3):300–9. doi: https://doi.org/10.2174/1381612826666200127092208
34. West DC, Pan D, Tonsing-Carter EY, Hernandez KM, Pierce CF, Styke SC, et al. GR and ER coactivation alters the expression of differentiation genes and associates with improved ER+ breast cancer outcome. Mol Cancer Res. 2016;14(8):707–19. doi: https://doi.org/10.1158/1541-7786.MCR-15-0433
35. Abduljabbar R, Negm OH, Lai CF, Jerjees DA, Al-Kaabi M, Hamed MR, et al. Clinical and biological significance of glucocorticoid receptor (GR) expression in breast cancer. Breast Cancer Res Treat. 2015;150(2):335–46. doi: https://doi.org/10.1007/s10549-015-3335-1
36. Pan D, Kocherginsky M, Conzen SD. Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res. 2011;71(20):6360-70. doi: https://doi.org/10.1158/0008-5472.CAN-11-0362
37. Mitre-Aguilar IB, Moreno-Mitre D, Melendez-Zajgla J, Maldonado V, Jacobo-Herrera NJ, Ramirez-Gonzalez V, et al. The role of glucocorticoids in breast cancer therapy. Curr Oncol. 2022;30(1):298–314. doi: https://doi.org/10.3390/curroncol30010024
38. Baell JB, Nissink J, Willem M. Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem Biol. 2018;13(1):36–44. doi: https://doi.org/10.1021/acschembio.7b00903
39. Pham-The H, Cabrera-Pérez MÁ, Nam NH, Castillo-Garit JA, Rasulev B, Le-Thi-Thu H, et al. In silico assessment of ADME properties: advances in Caco-2 cell monolayer permeability modeling. Curr Top Med Chem. 2018;18(26):2209–29. doi: https://doi.org/10.2174/1568026619666181130140350
40. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–6. doi: https://doi.org/10.1093/nar/gkm958
41. Rampe D, Brown AM. A history of the role of the hERG channel in cardiac risk assessment. J Pharmacol Toxicol Methods. 2013;68(1):13–22. doi: https://doi.org/10.1016/j.vascn.2013.03.005
42. Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. BioMed Res Int. 2013;2013:321213. doi: https://doi.org/10.1155/2013/321213
43. Elliott S. Current awareness of piperazines: pharmacology and toxicology. Drug Test Anal. 2011;3(7–8):430–8. doi: https://doi.org/10.1002/dta.307
44. Zhou ZX, Yin XD, Zhang Y, Shao QH, Mao XY, Hu WJ, et al. Antifungal drugs and drug-induced liver injury: a real-world study leveraging the FDA adverse event reporting system database. Front Pharmacol. 2022;13:891336. doi: https://doi.org/10.3389/fphar.2022.891336
45. Bunchorntavakul Ch, Reddy KR. Drug hepatotoxicity: newer agents. Clin Liver Dis. 2017;21(1):115–34. doi: https://doi.org/10.1016/j.cld.2016.08.009
46. Yarlagadda SG, Perazella MA. Drug-induced crystal nephropathy: an update. Expert Opin Drug Saf. 2008;7(2):147–58. doi: https://doi.org/10.1517/14740338.7.2.147
47. Ballantyne B, Myers RC, Klonne DR. Comparative acute toxicity and primary irritancy of the ethylidene and vinyl isomers of norbornene. J Appl Toxicol. 1997;17(4):211-221. doi: https://doi.org/10.1002/(sici)1099-1263(199707)17:4<211::aid-jat430>3.0.co;2-x
48. Rheingold SR, Neugut AI, Meadows AT. Therapy-related secondary cancers. 6th ed. BC Decker: Holland-Frei Cancer Medicine; 2003.
49. ICH S1A. Guideline on the need for carcinogenicity studies of pharmaceuticals. S1A Guideline. 1995. [cited 2024 Sep 9]. Available from https://www.ich.org/page/safety-guidelines
50. ICH topic S1B. Carcinogenicity: testing for carcinogenicity of pharmaceuticals. Step 4 consensus guideline. Part I. S1B-R1. 2022.[cited 2024 Sep 10]. Available from https://www.ich.org/page/safety-guidelines
51. ICH topic S1B. Testing for carcinogenicity of pharmaceuticals, part II, S1B-R1. 2021. [cited 2024 Sep 10] Available from https://www.ich.org/page/safety-guidelines
52. Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC 3rd, Boekelheide K, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev. 2010;13(2–4):51–138. doi: https://doi.org/10.1080/10937404.2010.483176
53. Horwitz KB, Costlow ME, McGuire WL. MCF-7; a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors Steroids. 1975;26(6):785–95. doi: https://doi.org/10.1016/0039-128x(75)90110-5
54. Choupani E, Madjd Z, Saraygord-Afshari N, Kiani J, Hosseini A. Combination of androgen receptor inhibitor enzalutamide with the CDK4/6 inhibitor ribociclib in triple negative breast cancer cells. PLoS One. 2022;17(12):e0279522. doi: https://doi.org/10.1371/journal.pone.0279522
55. Lee YHA, Hui JMH, Leung CH, Tsang CTW, Hui K, Tang P, et al. Major adverse cardiovascular events of enzalutamide versus abiraterone in prostate cancer: a retrospective cohort study. Prostate Cancer Prostatic Dis. 2023;27(4):776–82. doi: https://doi.org/10.1038/s41391-023-00757-0
56. Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-all-rounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. doi: https://doi.org/10.3389/fimmu.2019.01744
57. Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci. 2013;34(9):518–30. doi: https://doi.org/10.1016/j.tips.2013.07.003
58. Buxant F, Kindt N, Laurent G, Noël JC, Saussez S. Antiproliferative effect of dexamethasone in the MCF-7 breast cancer cell line. Mol Med Rep. 2015;12(3):4051–4. doi: https://doi.org/10.3892/mmr.2015.3920
59. Serbian I, Hoenke S, Csuk R. Synthesis of some steroidal mitocans of nanomolar cytotoxicity acting by apoptosis. Eur J Med Chem. 2020;199:112425. doi: https://doi.org/10.1016/j.ejmech.2020.112425
60. Tieszen CR, Goyeneche AA, Brandhagen BN, Ortbahn CT, Telleria CM. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression. BMC Cancer. 2011;11:207. doi: https://doi.org/10.1186/1471-2407-11-207
61. Araldi RP, de Melo TC, Mendes TB, de Sá Júnior PL, Nozima BH, Ito ET, et al. Using the comet and micronucleus assays for genotoxicity studies: a review. Biomed Pharmacother. 2015;72:74–82. doi: https://doi.org/10.1016/j.biopha.2015.04.004
62. Azqueta A, Stopper H, Zegura B, Dusinska M, Møller P. Do cytotoxicity and cell death cause false positive results in the in vitro comet assay?. Mutation Res Genet Toxicol Environ Mutagen. 2022;881:503520. doi: https://doi.org/10.1016/j.mrgentox.2022.503520
63. Sakellakis M, Flores LJ. Androgen receptor signaling–mitochondrial DNA–oxidative phosphorylation: a critical triangle in early prostate cancer. Curr Urol. 2022;16(4):207–12. doi: https://doi.org/10.1097/CU9.0000000000000120
Year
Month