Synthesis, in silico, and in vitro pharmacological evaluation of norbornenylpiperazine derivatives as potential ligands for nuclear hormone receptors

Karine Badalyan Nelly Babayan Elena Kalita Narine Grigoryan Natalya Sarkisyan Ruzanna Grigoryan Grigor Arakelov Alexan Shahkhatuni Hovhannes Attaryan Davit Mkrtchyan Hasmik Khachatryan Lusine Khondkaryan   

Open Access   

Published:  Apr 16, 2025

DOI: 10.7324/JAPS.2025.230239
Abstract

Piperazine, norbornene, and their derivatives are valuable scaffolds in rational drug design, with promising therapeutic applications in various diseases, including cancer. Given that hybridization of privileged structures is a highly effective strategy in drug development, we synthesized piperazine derivatives containing a norbornenyl fragment using a straightforward synthetic pathway. Eight synthesized norbornenylpiperazine compounds (4a–4h) were evaluated for their potential interactions with target proteins, along with an in silico assessment of their absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles. In vitro cytotoxicity and genotoxicity were also assessed using Michigan Cancer Foundation (MCF)-7 breast cancer cell lines, which express the relevant target receptors. High affinity was observed for the androgen receptor, peroxisome proliferator-activated receptor gamma, and glucocorticoid receptors, with a greater number of norbornenylpiperazine compounds showing strong affinity for the latter one. The drug-likeness and ADMET properties of these compounds revealed favorable pharmacokinetic profiles and moderate toxicity. Notably, compounds 4a, 4e, and 4h significantly inhibited MCF-7 cell proliferation, underscoring their potential as cancer therapeutics. Importantly, none of the compounds induced DNA damage at non-cytotoxic concentrations, which, together with in silico predictions, indicates a low likelihood of genotoxicity. These findings provide a foundation for further development and functional evaluation of selected synthesized norbornenylpiperazine compounds.


Keyword:     Norbornenylpiperazine derivatives synthesis computational studies ADMET prediction in vitro evaluation


Citation:

Badalyan K, Babayan N, Kalita E, Grigoryan N, Sarkisyan N, Grigoryan R, Arakelov G, Shahkhatuni A, Attaryan H, Mkrtchyan D, Khachatryan H, Khondkaryan L. Synthesis, in silico, and in vitro pharmacological evaluation of norbornenylpiperazine derivatives as potential ligands for nuclear hormone receptors. J Appl Pharm Sci. 2025. Online First. https://doi.org/10.7324/JAPS.2025.230239

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Avdeef A. Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem. 2001;1(4):277–351. doi: https://doi.org/10.2174/1568026013395100

2. Vogel P, Cossy J, Plumet J, Arjona O. Derivatives of 7-oxabicyclo[2.2.1]heptane in nature and as useful synthetic intermediates. Tetrahedron. 1999;55(48):13521–642. doi: https://doi.org/10.1016/S0040-4020(99)00845-5

3. Spande TF, Garraffo HM, Edwards MW, Yeh HJC, Pannell L, Daly JW. Epibatidine: a novel (chloropyridyl)azabicyclo heptane with potent analgesic activity from an Ecuadoran poison frog. J Am Chem Soc. 1992;114(9):3475–78. doi: https://doi.org/10.1021/ja00035a048

4. Chang LL, Truong Q, Doss GA, MacCoss M, Lyons K, McCauley E, et al. Highly constrained bicyclic VLA-4 antagonists. Bioorg Med Chem Lett. 2007;7(3):597–601. doi: https://doi.org/10.1016/j.bmcl.2006.11.011

5. Lautens M, Han W. Divergent selectivity in MgI2-mediated ring expansions of methylenecyclopropyl amides and imides. J Am Chem Soc. 2002;124(22):6312–16. doi: https://doi.org/10.1021/ja011110o

6. Arjona O, Csákÿ AG, Plumet J. Sequential metathesis in oxa- and azanorbornene derivatives. Eur J Org Chem. 2003;2003(4):611–22. doi: https://doi.org/10.1002/ejoc.200390100

7. Calvo-Martín G, Plano D, Martínez-Sáez N, Aydillo C, Moreno E, Espuelas S, et al. Norbornene and related structures as scaffolds in the search for new cancer treatments. Pharmaceuticals (Basel). 2022;15(12):1465. doi: https://doi.org/10.3390/ph15121465

8. Hossain M, Habib I, Singha K, Kumar A. FDA-approved heterocyclic molecules for cancer treatment: synthesis, dosage, mechanism of action and their adverse effect. Heliyon. 2023;10(1):e23172. doi: https://doi.org/10.1016/j.heliyon.2023.e23172

9. Zhang RH, Guo HY, Deng H, Li J, Quan ZhSh. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem. 2021;36(1):1165–97. doi: https://doi.org/10.1080/14756366.2021.1931861

10. Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin Drug Discov. 2022;17(9):969–84. doi: https://doi.org/10.1080/17460441.2022.2103535

11. Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014;57(24):10257–71024. doi: https://doi.org/10.1021/jm501100b

12. Brito AF, Moreira LKS, Menegatti R, Costa EA. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam Clin Pharmacol. 2019;33(1):13–24. doi: https://doi.org/10.1111/fcp.12408

13. Hetzer HB, Robinson RA, Bates RG. Dissociation constants of piperazinium ion and related thermodynamic quantities from 0 to 50.deg. J Phys Chem. 1968;72(6):2081–6. doi: https://doi.org/10.1021/j100852a034

14. Manallack DT. The pKa distribution of drugs: application to drug discovery. Perspect Medicin Chem. 2007;1:25–38.

15. Viegas-Junior C, Danuello A, da Silva Bolzani V, Barreiro EJ, Fraga CA. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem. 2007;14(17):1829–52. doi: https://doi.org/10.2174/092986707781058805

16. Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid drugs-A strategy for overcoming anticancer drug resistance? Molecules. 2021;26(9):2601. doi: https://doi.org/10.3390/molecules26092601

17. Rodríguez-Franco MI, Fernández-Bachiller MI, Pérez C, Hernández-Ledesma B, Bartolomé B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem. 2006;49(2):459–62. doi: https://doi.org/10.1021/jm050746d

18. Li K, Schurig-Briccio LA, Feng X, Upadhyay A, Pujari V, Lechartier B, et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J Med Chem. 2014;57(7):3126–39. doi: https://doi.org/10.1021/jm500131s

19. Ciba Geigy Corp, Southcott MR. Novel oligomers useful for making cured fibre reinforced composites, US patent, US5026871A; 1991.

20. Kami?ski K, Obniska J, Wiklik B, Atamanyuk D. Synthesis and anticonvulsant properties of new acetamide derivatives of phthalimide, and its saturated cyclohexane and norbornene analogs. Eur J Med Chem. 2011;46(9):4634–41. doi: https://doi.org/10.1016/j.ejmech.2011.07.043

21. Sakhautdinov IM, Mukhametyanova AF. Synthesis of New cyclopentenofullerenes containing a norbornene fragment. Russ J Org Chem. 2019;55(9):1275–9. doi: https://doi.org/10.1134/S1070428019090033

22. Abagyan R, Totrov M, Kuznetsov D. ICM – A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994;15(5):488–506. doi: https://doi.org/10.1002/jcc.540150503

23. Landrum, G. Rdkit: open-source cheminformatics software. [cited 2023 Apr 29] Available from: https://github.com/rdkit

24. Kumar PR, Seshadri M, Jaikrishan G, Das B. Effect of chronic low dose natural radiation in human peripheral blood mononuclear cells: evaluation of DNA damage and repair using the alkaline comet assay. Mut Res. 2015;775:59–65. doi: https://doi.org/10.1016/j.mrfmmm.2015.03.011

25. Dai C, Ellisen LW. Revisiting androgen receptor signaling in breast cancer. Oncologist. 2023;28(5):383–91. doi: https://doi.org/10.1093/oncolo/oyad049

26. Ravaioli S, Maltoni R, Pasculli B, Parrella P, Giudetti AM, Vergara D, et al. Androgen receptor in breast cancer: the “5W” questions. Front Endocrinol. 2022;13:977331. doi: https://doi.org/10.3389/fendo.2022.977331

27. Brisken C. Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer. 2013:13(6):385–96. doi: https://doi.org/10.1038/nrc3518

28. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9(18):2266–78. doi: https://doi.org/10.1101/gad.9.18.2266

29. Zheng N, Chen J, Liu W, Liu J, Li T, Chen H, et al. Mifepristone inhibits ovarian cancer metastasis by intervening in SDF-1/CXCR4 chemokine axis. Oncotarget. 2017;8(35):59123–35. doi: https://doi.org/10.18632/oncotarget.19289

30. Lee O, Sullivan ME, Xu Y, Rogers C, Muzzio M, Helenowski I, et al. Selective progesterone receptor modulators in early-stage breast cancer: a randomized, placebo-controlled phase II window-of-opportunity trial using telapristone acetate. Clin Cancer Res. 2020;26(1):25–34. doi: https://doi.org/10.1158/1078-0432.CCR-19-0443

31. Liu JH, Soper D, Lukes A, Gee P, Kimble T, Kroll R, et al. Ulipristal acetate for treatment of uterine leiomyomas a randomized controlled trial. Obstet Gynecol. 2018;132(5):1241–51. doi: https://doi.org/10.1097/AOG.0000000000002942

32. Lewis JH, Cottu PH, Lehr M, Dick E, Shearer T, Rencher W, et al. Onapristone extended release: safety evaluation from phase I–II studies with an emphasis on hepatotoxicity. Drug Saf. 2020;43:1045–55. doi: https://doi.org/10.1007/s40264-020-00964-x

33. Ciebiera M, Vitale SG, Ferrero S, Vilos GA, Barra F, Caruso S, et al. Vilaprisan, a new selective progesterone receptor modulator in uterine fibroid pharmacotherapy-will it really be a breakthrough?. Curr Pharm Des. 2020;26(3):300–9. doi: https://doi.org/10.2174/1381612826666200127092208

34. West DC, Pan D, Tonsing-Carter EY, Hernandez KM, Pierce CF, Styke SC, et al. GR and ER coactivation alters the expression of differentiation genes and associates with improved ER+ breast cancer outcome. Mol Cancer Res. 2016;14(8):707–19. doi: https://doi.org/10.1158/1541-7786.MCR-15-0433

35. Abduljabbar R, Negm OH, Lai CF, Jerjees DA, Al-Kaabi M, Hamed MR, et al. Clinical and biological significance of glucocorticoid receptor (GR) expression in breast cancer. Breast Cancer Res Treat. 2015;150(2):335–46. doi: https://doi.org/10.1007/s10549-015-3335-1

36. Pan D, Kocherginsky M, Conzen SD. Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res. 2011;71(20):6360-70. doi: https://doi.org/10.1158/0008-5472.CAN-11-0362

37. Mitre-Aguilar IB, Moreno-Mitre D, Melendez-Zajgla J, Maldonado V, Jacobo-Herrera NJ, Ramirez-Gonzalez V, et al. The role of glucocorticoids in breast cancer therapy. Curr Oncol. 2022;30(1):298–314. doi: https://doi.org/10.3390/curroncol30010024

38. Baell JB, Nissink J, Willem M. Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem Biol. 2018;13(1):36–44. doi: https://doi.org/10.1021/acschembio.7b00903

39. Pham-The H, Cabrera-Pérez MÁ, Nam NH, Castillo-Garit JA, Rasulev B, Le-Thi-Thu H, et al. In silico assessment of ADME properties: advances in Caco-2 cell monolayer permeability modeling. Curr Top Med Chem. 2018;18(26):2209–29. doi: https://doi.org/10.2174/1568026619666181130140350

40. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–6. doi: https://doi.org/10.1093/nar/gkm958

41. Rampe D, Brown AM. A history of the role of the hERG channel in cardiac risk assessment. J Pharmacol Toxicol Methods. 2013;68(1):13–22. doi: https://doi.org/10.1016/j.vascn.2013.03.005

42. Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. BioMed Res Int. 2013;2013:321213. doi: https://doi.org/10.1155/2013/321213

43. Elliott S. Current awareness of piperazines: pharmacology and toxicology. Drug Test Anal. 2011;3(7–8):430–8. doi: https://doi.org/10.1002/dta.307

44. Zhou ZX, Yin XD, Zhang Y, Shao QH, Mao XY, Hu WJ, et al. Antifungal drugs and drug-induced liver injury: a real-world study leveraging the FDA adverse event reporting system database. Front Pharmacol. 2022;13:891336. doi: https://doi.org/10.3389/fphar.2022.891336

45. Bunchorntavakul Ch, Reddy KR. Drug hepatotoxicity: newer agents. Clin Liver Dis. 2017;21(1):115–34. doi: https://doi.org/10.1016/j.cld.2016.08.009

46. Yarlagadda SG, Perazella MA. Drug-induced crystal nephropathy: an update. Expert Opin Drug Saf. 2008;7(2):147–58. doi: https://doi.org/10.1517/14740338.7.2.147

47. Ballantyne B, Myers RC, Klonne DR. Comparative acute toxicity and primary irritancy of the ethylidene and vinyl isomers of norbornene. J Appl Toxicol. 1997;17(4):211-221. doi: https://doi.org/10.1002/(sici)1099-1263(199707)17:4<211::aid-jat430>3.0.co;2-x

48. Rheingold SR, Neugut AI, Meadows AT. Therapy-related secondary cancers. 6th ed. BC Decker: Holland-Frei Cancer Medicine; 2003.

49. ICH S1A. Guideline on the need for carcinogenicity studies of pharmaceuticals. S1A Guideline. 1995. [cited 2024 Sep 9]. Available from https://www.ich.org/page/safety-guidelines

50. ICH topic S1B. Carcinogenicity: testing for carcinogenicity of pharmaceuticals. Step 4 consensus guideline. Part I. S1B-R1. 2022.[cited 2024 Sep 10]. Available from https://www.ich.org/page/safety-guidelines

51. ICH topic S1B. Testing for carcinogenicity of pharmaceuticals, part II, S1B-R1. 2021. [cited 2024 Sep 10] Available from https://www.ich.org/page/safety-guidelines

52. Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC 3rd, Boekelheide K, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev. 2010;13(2–4):51–138. doi: https://doi.org/10.1080/10937404.2010.483176

53. Horwitz KB, Costlow ME, McGuire WL. MCF-7; a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors Steroids. 1975;26(6):785–95. doi: https://doi.org/10.1016/0039-128x(75)90110-5

54. Choupani E, Madjd Z, Saraygord-Afshari N, Kiani J, Hosseini A. Combination of androgen receptor inhibitor enzalutamide with the CDK4/6 inhibitor ribociclib in triple negative breast cancer cells. PLoS One. 2022;17(12):e0279522. doi: https://doi.org/10.1371/journal.pone.0279522

55. Lee YHA, Hui JMH, Leung CH, Tsang CTW, Hui K, Tang P, et al. Major adverse cardiovascular events of enzalutamide versus abiraterone in prostate cancer: a retrospective cohort study. Prostate Cancer Prostatic Dis. 2023;27(4):776–82. doi: https://doi.org/10.1038/s41391-023-00757-0

56. Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-all-rounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. doi: https://doi.org/10.3389/fimmu.2019.01744

57. Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci. 2013;34(9):518–30. doi: https://doi.org/10.1016/j.tips.2013.07.003

58. Buxant F, Kindt N, Laurent G, Noël JC, Saussez S. Antiproliferative effect of dexamethasone in the MCF-7 breast cancer cell line. Mol Med Rep. 2015;12(3):4051–4. doi: https://doi.org/10.3892/mmr.2015.3920

59. Serbian I, Hoenke S, Csuk R. Synthesis of some steroidal mitocans of nanomolar cytotoxicity acting by apoptosis. Eur J Med Chem. 2020;199:112425. doi: https://doi.org/10.1016/j.ejmech.2020.112425

60. Tieszen CR, Goyeneche AA, Brandhagen BN, Ortbahn CT, Telleria CM. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression. BMC Cancer. 2011;11:207. doi: https://doi.org/10.1186/1471-2407-11-207

61. Araldi RP, de Melo TC, Mendes TB, de Sá Júnior PL, Nozima BH, Ito ET, et al. Using the comet and micronucleus assays for genotoxicity studies: a review. Biomed Pharmacother. 2015;72:74–82. doi: https://doi.org/10.1016/j.biopha.2015.04.004

62. Azqueta A, Stopper H, Zegura B, Dusinska M, Møller P. Do cytotoxicity and cell death cause false positive results in the in vitro comet assay?. Mutation Res Genet Toxicol Environ Mutagen. 2022;881:503520. doi: https://doi.org/10.1016/j.mrgentox.2022.503520

63. Sakellakis M, Flores LJ. Androgen receptor signaling–mitochondrial DNA–oxidative phosphorylation: a critical triangle in early prostate cancer. Curr Urol. 2022;16(4):207–12. doi: https://doi.org/10.1097/CU9.0000000000000120

Article Metrics
17 Views 5 Downloads 22 Total

Year

Month

Related Search

By author names