In this short review, information on the anticancer properties of paeoniflorin (PF) and paeonol (PN) from Paeonia species is collated with reference to the types of cancer, cell lines, effects, and molecular processes. The chemistry, botany, and uses of Paeonia lactiflora and P. suffruticosa, where respective PF and PN are often isolated, are briefly described. PF is a monoterpene glucoside while PN is a phenolic compound. The chemical structure of PF consists of a glucose moiety, a benzoyl moiety, and a cage-like pinane skeleton. PN has a ketone carbonyl side chain at C1, an OH group at C2, and a methoxy component at C4. PF has effects on eight types of cancer cells of which glioma cells are most affected. Liver cancer cells are most affected by PN. In this overview, the anticancer properties of PF and PN against five types of cancer cells are described. Information entails cancer cell types, cancer cell lines, effects, and molecular mechanisms. Some further studies on the anticancer properties of PF and PN are suggested.
Chan EWC. Paeoniflorin and paeonol from Paeonia species are promising compounds with anticancer and other pharmacological properties. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.231323
1. Hong DY. Peonies of the world: taxonomy and phytogeography. London, UK: Royal Botanic Garden, Kew; 2010. pp 300.
2. Hong DY. Peonies of the world: polymorphism and diversity. London, UK: Royal Botanic Garden, Kew; 2011. pp 94.
3. Li P, Shen J, Wang Z, Liu S, Liu Q, Li Y, et al. Genus Paeonia: a comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. J Ethnopharmacol. 2021;269:113708. doi: https://doi.org/10.1016/j.jep.2020.113708
4. Wu S, Wu D, Chen Y. Chemical constituents and bioactivities of plants from the genus Paeonia. Chem Biodivers. 2010;7(1):90−104. doi: https://doi.org/10.1002/cbdv.200800.148
5. Kumar S, Ratha KK, Rao MM, Acharya R. A comprehensive review on the phytochemistry, pharmacological, ethnobotany, and traditional uses of Paeonia species. J Herbmed Pharmacol. 2023;12(1):13−24. doi: https://doi.org/10.34172/jhp.2023.02
6. He CN, Peng Y, Zhang YC, Xu LJ, Gu J, Xiao PG. Phytochemical and biological studies of Paeoniaceae. Chem Biodivers. 2010;7(4):805−38.
7. Li Y, Zhang L, Wang W, Liu Y, Sun D, Li H, et al. A review on natural products with cage-like structure. Bioorg Chem. 2022; 128:106106. doi: https://doi.org/10.1016/j.bioorg.2022.106106
8. Parker S, May B, Zhang C, Zhang AL, Lu C, Xue CC. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother Res. 2016;30(9):1445−73. doi: https://doi.org/10.1002/ptr.5653
9. Zhang K, Yao L, Zhang Y, Baskin JM, Baskin CC, Xiong Z, et al. A review of the seed biology of Paeonia species (Paeoniaceae), with particular reference to dormancy and germination. Planta. 2019;249:291−303. doi: https://doi.org/10.1007/s00425-018-3017-4
10. Du GH, Yuan TY, Zhang YX. The potential of traditional Chinese medicine in the treatment and modulation of pain. Adv Pharmacol. 2016;75:325−61. doi: https://doi.org/10.1016/bs.apha.2016.01.001
11. Wu M, Yu Z, Li X, Zhang X, Wang S, Yang S, et al. Paeonol for the treatment of atherosclerotic cardiovascular disease: a pharmacological and mechanistic overview. Front Cardiovasc Med. 2021;8:690116. doi: https://doi.org/10.3389/fcvm.2021.690116
12. Lim TK. Paeonia lactiflora. In: Edible medicinal and non-medicinal plants: Volume 8, Flowers. Dordrecht: Springer Science & Business Media; 2014. pp. 559−96. doi: https://doi.org/10.1007/978-94
13. Kim J, Choi J, Kang SS, Lee S. Simultaneous determination of phytochemical constituents in Paeonia lactiflora extracts using the HPLC-UV method. J Appl Biol Chem. 2021;64(1):13−7. doi: https://doi.org/10.3839/jabc.2021.003
14. Ekiert H, Klimek-Szczykutowicz M, Szopa A. Paeonia × suffruticosa (Moutan Peony)—a review of the chemical composition, traditional and professional use in medicine, position in cosmetics industries, and biotechnological studies. Plants. 2022;11(23):3379. doi: https://doi.org/10.3390/plants11233379
15. Seo CS, Kim JH, Shin HK, Kim BS. Quantitative analysis of (+)-catechin, paeoniflorin, and paeonol in moutan radicis cortex and its processed products. Kor J Pharmacogn. 2016;47(3):237−45.
16. Zhao C, Luo C, Ling W, Yin M, Qin S. Modern research progress on pharmacological effects of paeoniflorin. IOP Conf EES. 2020;559(1):12015. doi: https://doi.org/10.1088/1755-1315/559/1/012015
17. Abdel-Hafez AA, Meselhy MR, Nakamura N, Hattori M, Watanabe H, Mukarami Y, et al. Effects of paeoniflorin derivatives on scopolamine-induced amnesia using a passive avoidance task in mice; structure-activity relationship. Biol Pharm Bull. 1998;21(11):1174−9. doi: https://doi.org/10.1248/bpb.21.1174
18. Shibata S, Nakahara M. Studies on the constituents of Japanese and Chinese crude drugs. VIII. Paeoniflorin, a glucoside of Chinese paeony root. Chem Pharm Bull. 1963;11(3):372−8.
19. Kaneda M, Iitaka Y, Shibata S. The absolute structures of paeoniflorin, albiflorin, oxypaeoniflorin and benzoylpaeoniflorin isolated from Chinese paeony root. Tetrahedron. 1972;28(16):4309−17. doi: https://doi.org/10.1016/S0040-4020(01)88953-5
20. Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci. 2020;250:117544. doi: https://doi.org/10.1016/j.lfs.2020.117544
21. Wang Y, Li BS, Zhang ZH, Wang Z, Wan YT, Wu FW, et al. Paeonol repurposing for cancer therapy: from mechanism to clinical translation. Biomed Pharmacother. 2023;165:115277. doi: https://doi.org/10.1016/j.biopha.2023.115277
22. Harada M, Yamashita A. Pharmacological studies on the root bark of Paeonia moutan. I. Central effects of paeonol. J Pharm Soc Jpn. 1969;89(9):1205−11. doi: https://doi.org/10.1248/yakushi1947.89.9_1205
23. Deng LJ, Lei YH, Chiu TF, Qi M, Gan H, Zhang G, et al. The anticancer effects of paeoniflorin and its underlying mechanisms. Nat Prod Commun. 2019;14(9):1−8. doi: https://doi.org/10.1177/1934578X19876409
24. Xiang Y, Zhang Q, Wei S, Huang C, Li Z, Gao Y. Paeoniflorin: a monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. J Pharm Pharmacol. 2020;72(4):483−95. doi: https://doi.org/10.1111/jphp.13204
25. Wang XZ, Xia L, Zhang XY, Chen Q, Li X, Mou Y, et al. The multifaceted mechanisms of paeoniflorin in the treatment of tumors: state-of-the-art. Biomed Pharmacother. 2022;149:112800. doi: https://doi.org/10.1016/j.biopha.2022.112800
26. Li W, Qi Z, Wei Z, Liu S, Wang P, Chen Y, et al. Paeoniflorin inhibits proliferation and induces apoptosis of human glioma cells via microRNA-16 up-regulation and matrix metalloproteinase-9 downregulation. Mol Med Rep. 2015;12(2):2735−40. doi: https://doi.org/10.3892/mmr.2015.3718
27. Nie XH, Ou-Yang J, Xing Y, Li DY, Dong XY, Liu RE, et al. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin–proteasome pathway. Drug Des Devel Ther. 2015;9:5611−22. doi: https://doi.org/10.2147/DDDT.S93912
28. Ouyang J, Xu H, Li M, Dai X, Fu F, Zhang X, et al. Paeoniflorin exerts antitumor effects by inactivating S phase kinase-associated protein 2 in glioma cells. Oncol Rep. 2018;39(3):1052−62. doi: https://doi.org/10.3892/or.2017.6175
29. Wang Z, Liu Z, Yu G, Nie X, Jia W, Liu RE, et al. Paeoniflorin inhibits migration and invasion of human glioblastoma cells via suppression transforming growth factor β-induced epithelial–mesenchymal transition. Neurochem Res. 2018;43:760−74. doi: https://doi.org/10.1007/s11064-018-2478-y
30. Wang Z, Yu G, Liu Z, Zhu J, Chen C, Liu RE, et al. Paeoniflorin inhibits glioblastoma growth in vivo and in vitro: a role for the Triad3A-dependent ubiquitin proteasome pathway in TLR4 degradation. Cancer Manag Res. 2018;10:887. doi: https://doi.org/10.2147 /CMAR.S160292
31. Yu G, Wang Z, Zeng S, Liu S, Zhu C, Xu R, et al. Paeoniflorin inhibits hepatocyte growth factor (HGF)-induced migration and invasion and actin rearrangement via suppression of c-Met-mediated RhoA/ROCK signaling in glioblastoma. BioMed Res Int. 2019;2019:9053295. doi: https://doi.org/10.1155/2019/9053295
32. Gao ZW, Huang YY, Zhang JQ, Rong JY, Qiao GY, Chen N, et al. Paeoniflorin elicits the anti-proliferative effects on glioma cell via targeting translocator protein 18 KDa. J Pharmacol Sci. 2021;145(1):115−21. doi: https://doi.org/10.1016/j.jphs.2020.10.004
33. Liu Z, Wang Z, Chen D, Liu X, Yu G, Zhang Y, et al. Paeoniflorin inhibits EMT and angiogenesis in human glioblastoma via K63-linked C-Met polyubiquitination-dependent autophagic degradation. Front Oncol. 2022;12:785345. doi: https://doi.org/10.3389/fonc.2022.785345
34. Nie XH, Qiu S, Xing Y, Xu J, Lu B, Zhao SF, et al. Paeoniflorin regulates NEDD4L/STAT3 pathway to induce ferroptosis in human glioma cells. J Oncol. 2022;2022:6093216. doi: https://doi.org/10.1155/2022/6093216
35. Wu H, Li W, Wang T, Shu Y, Liu P. Paeoniflorin suppresses NF-κB activation through modulation of IκBα and enhances 5-fluorouracil-induced apoptosis in human gastric carcinoma cells. Biomed Pharmacother. 2008;62(9):659−66. doi: https://doi.org/10.10 16/j.biopha.2008.08.002
36. Fang S, Zhu W, Zhang Y, Shu Y, Liu P. Paeoniflorin modulates multidrug resistance of a human gastric cancer cell line via the inhibition of NF-κB activation. Mol Med Rep. 2012;5(2):351−6. doi: https://doi.org/10.3892/mmr.2011.652
37. Zheng YB, Xiao GC, Tong SL, Ding Y, Wang QS, Li SB, et al. Paeoniflorin inhibits human gastric carcinoma cell proliferation through up-regulation of microRNA-124 and suppression of PI3K/Akt and STAT3 signaling. World J Gastroenterol. 2015;21(23): 7197−207. doi: https://doi.org/10.3748/wjg.v21.i23.7197
38. Wang ZF, Ma DG, Wang L, Feng L, Fu JW, Li Y, et al. Paeoniflorin inhibits migration-and invasion-promoting capacities of gastric cancer associated fibroblasts. Chin J Integr Med. 2019;25:837−44. doi: https://doi.org/10.1007/s11655-018-2985-3
39. Niu K, Liu Y, Zhou Z, Wu X, Wang H, Yan J. Antitumor effects of paeoniflorin on hippo signaling pathway in gastric cancer cells. J Oncol. 2021;2021:4724938. doi: https://doi.org/10.1155/2021/4724938
40. Kim TW. Paeoniflorin induces ER stress-mediated apoptotic cell death by generating Nox4-derived ROS under radiation in gastric cancer. Nutrients. 2023;15(24):5092. doi: https://doi.org/10.3390/nu15245092
41. Hu S, Sun W, Wei W, Wang D, Jin J, Wu J, et al. Involvement of the prostaglandin E receptor EP2 in paeoniflorin-induced human hepatoma cell apoptosis. Anticancer Drugs. 2013;24(2):140−9. doi: https://doi.org/10.1097/CAD.0b013e32835a4dac
42. Lu JT, He W, Song SS, Wei W. Paeoniflorin inhibited the tumor invasion and metastasis in human hepatocellular carcinoma cells. Bratisl Lek Listy. 2014;115(7):427−33. doi: https://doi.org/10.4149/BLL_2014_084
43. Liu H, Zang L, Zhao J, Wang Z, Li L. Paeoniflorin inhibits cell viability and invasion of liver cancer cells via inhibition of Skp2. Oncol Lett. 2020;19(4):3165−72. doi: https://doi.org/10.3892/ol.2020.11424
44. Zhou Y, Liu X, Gao Y, Tan R, Wu Z, Zhong Q, et al. Paeoniflorin affects hepatocellular carcinoma progression by inhibiting Wnt/β-catenin pathway through downregulation of 5-HT1D. Curr Pharm Biotechnol. 2021;22(9):1246−53. doi: https://doi.org/10.2174/1389201021666201009153808
45. Gao M, Zhang D, Jiang C, Jin Q, Zhang J. Paeoniflorin inhibits hepatocellular carcinoma growth by reducing PD-L1 expression. Biomed Pharmacother. 2023;166:115317. doi: https://doi.org/10.1016/j.biopha.2023.115317
46. Li J, Zhu C, Zhang Z, Zheng X, Wang C, Zhang H. Paeoniflorin increases the anti-tumor efficacy of sorafenib in tumor-bearing mice with liver cancer via suppressing the NF-κB/PD-l1 axis. Heliyon. 2024;10:e24461. doi: https://doi.org/10.1016/j.heliyon.2024.e24461
47. Zhang Q, Yuan Y, Cui J, Xiao T, Jiang D. Paeoniflorin inhibits proliferation and invasion of breast cancer cells through suppressing the Notch-1 signaling pathway. Biomed Pharmacother. 2016;78:197−203. doi: https://doi.org/10.1016/j.biopha.2016.01.019
48. Zhou Z, Wang S, Song C, Hu Z. Paeoniflorin prevents hypoxia-induced epithelial–mesenchymal transition in human breast cancer cells. Oncol Targets Ther. 2016;9: 2511−8. doi: https://doi.org/10.2147/OTT.S102422
49. Zhang J, Yu K, Han X, Zhen L, Liu M, Zhang X, et al. Paeoniflorin influences breast cancer cell proliferation and invasion via inhibition of the Notch?1 signaling pathway. Mol Med Rep. 2018;17(1):1321−5. doi: https://doi.org/10.3892/mmr.2017.8002
50. Wang Y, Wang Q, Li X, Luo G, Shen M, Shi J, et al. Paeoniflorin sensitizes breast cancer cells to tamoxifen by downregulating microRNA-15b via the FOXO1/CCND1/β-catenin axis. Drug Des Devel Ther. 2021;15:245−57. doi: https://doi.org/10.2147/DDDT.S278002
51. Zhang P, Wu N, Song ZJ, Tai ZF. Paeoniflorin enhances the sensitivity of ER-positive breast cancer cells to tamoxifen through promoting sirtuin 4. Evid Based Complement Alternat Med. 2022;2022:6730559. doi: https://doi.org/10.1155/2022/6730559
52. Wang H, Zhou H, Wang CX, Li YS, Xie HY, Luo JD, et al. Paeoniflorin inhibits growth of human colorectal carcinoma HT 29 cells in vitro and in vivo. Food Chem Toxicol. 2012;50(5):1560−7. doi: https://doi.org/10.1016/j.fct.2012.01.035
53. Yue M, Li S, Yan G, Li C, Kang Z. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells. Cell Cycle. 2018;17(2):240−9. doi: https://doi.org/10.1080/15384101.2017.1407892
54. Zhang JW, Li LX, Wu WZ, Pan TJ, Yang ZS, Yang YK. Anti-tumor effects of paeoniflorin on epithelial-to-mesenchymal transition in human colorectal cancer cells. Med Sci Monit. 2018;24:6405−13. doi: https://doi.org/10.3389/fphar.2017.00102
55. Wang Y, Zhou Y, Lin H, Chen H, Wang S. Paeoniflorin inhibits the proliferation and metastasis of ulcerative colitis-associated colon cancer by targeting EGFL7. J Oncol. 2022;2022:7498771. doi: https://doi.org/10.1155/2022/7498771
56. Su Z, Hu B, Li J, Zeng Z, Chen H, Guo Y, et al. Paeoniflorin inhibits colorectal cancer cell stemness through the miR-3194-5p/catenin beta-interacting protein 1 axis. Kaohsiung J Med Sci. 2023;39:1011−21. doi: https://doi.org/10.1002/kjm2.12736
57. Chang X, Feng X, Du M, Li S, Wang J, Wang Y, et al. Pharmacological effects and mechanisms of paeonol on antitumor and prevention of side effects of cancer therapy. Front Pharmacol. 2023;14:1194861. doi: https://doi.org/10.3389/fphar.2023.1194861
58. Xu SP, Sun GP, Shen YX, Wei W, Peng WR, Wang H. Antiproliferation and apoptosis induction of paeonol in HepG2 cells. World J Gastroenterol. 2007;13(2):250. doi: https://doi.org/10.3748/wjg.v13.i2.250
59. Xu SP, Sun GP, Shen YX, Peng WR, Wang H, Wei W. Synergistic effect of combining paeonol and cisplatin on apoptotic induction of human hepatoma cell lines. Acta Pharmacol Sin. 2007;28(6):869−78. doi: https://doi.org/10.1111/j.1745-7254.2007.00564.x
60. Sun GP, Wang H, Xu SP, Shen YX, Wu Q, Chen ZD, et al. Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-α production. Eur J Pharmacol. 2008;584:246−52. doi: https://doi.org/10.1016/j.ejphar.2008.02.016
61. Zhang C, Hu S, Cao M, Xiao G, Li Y. Antiproliferative and apoptotic effects of paeonol on human hepatocellular carcinoma cells. Anticancer Drugs. 2008;19(4):401−9. doi: https://doi.org/10.1097/CAD.0b013e3282f7f4eb
62. Chen B, Ning M, Yang G. Effect of paeonol on antioxidant and immune regulatory activity in hepatocellular carcinoma rats. Molecules. 2012;17(4):4672−83. doi: https://doi.org/10.3390/molecules17044672
63. Li Q, Zhang Y, Sun J, Bo Q. Paeonol?mediated apoptosis of hepatocellular carcinoma cells by NF?κB pathway. Oncol Lett. 2019;17(2):1761−7. doi: https://doi.org/10.3892/ol.2018.9730
64. Cai M, Shao W, Yu H, Hong Y, Shi L. Paeonol inhibits cell proliferation, migration and invasion and induces apoptosis in hepatocellular carcinoma by regulating miR-21-5p/KLF6 axis. Cancer Manag Res. 2020;12:5931−43. doi: https://doi.org/10.2147/CMAR.S254.485
65. Liu H, Zhang C. Paeonol induces antitumor effects in hepatocellular carcinoma cells through survivin via the cyclooxygenase-2/prostaglandin E2 signaling pathway. Translat Cancer Res. 2020;9(11):7183. doi: https://doi.org/10.21037/tcr-20-322A
66. Lei Y, Li HX, Jin WS, Peng WR, Zhang CJ, Bu LJ, et al. The radio-sensitizing effect of paeonol on lung adenocarcinoma by augmentation of radiation-induced apoptosis and inhibition of the PI3K/Akt pathway. Int J Radiat Biol. 2013;89(12):1079−86. doi: https://doi.org/10.3109/09553002.2013.825058
67. Tian Y, Chen C, Zhang Y, Zhang Z, Xie H. Paeonol inhibits migration, invasion and bone adhesion of small cell lung cancer cells. Curr Signal Transduct Ther. 2015;10(2):126−30.
68. Jiang Y, Li Y, Yang T, Shi X, Suo H, Zhang W, et al. Design, synthesis, and anti-lung adenocarcinoma activity research of novel paeonol Schiff base derivatives containing a 1,2,3-triazole moiety. J Chin Chem Soc. 2020;67(1):165−71. doi: https://doi.org/10.1002/jccs.201800491
69. Zhang L, Chen WX, Li LL, Cao YZ, Geng YD, Feng XJ, et al. Paeonol suppresses proliferation and motility of non-small-cell lung cancer cells by disrupting STAT3/NF-κB signaling. Front Pharmacol. 2020;11:572616. doi: https://doi.org/10.3389/fphar.2020.572616
70. Fan Y, Chen X, Zhang G. Paeonol enhances TRAIL-induced apoptosis of human lung cancer cells by upregulating death receptors-4 and -5 via ROS-JNK/ERK-CHOP signaling. Trop J Pharm Res. 2021;20(3):467−73. doi: https://doi.org/10.4314/tjpr.v20i3.4
71. Lv J, Zhu S, Chen H, Xu Y, Su Q, Yu G, et al. Paeonol inhibits human lung cancer cell viability and metastasis in vitro via miR-126-5p/ZEB2 axis. Drug Dev Res. 2022;83(2): 432−46. doi: https://doi.org/10.1002/ddr.21873
72. Zhang L, Wu L, Zhu X, Mei J, Chen Y. Paeonol represses A549 cell glycolytic reprogramming and proliferation by decreasing m6A modification of Acyl-CoA dehydrogenase. J Physiol Investig. 2023;66(4):248−56. doi: https://doi.org/10.4103/cjop.CJOP-D-22-00166
73. Zhang C, Zhang J, Guo K. Paeonol upregulates expression of tumor suppressors TNNC1 and SCARA5, exerting anti-tumor activity in non-small cell lung cancer cells. Naunyn Schmiedeberg Arch Pharmacol. 2024;397:1−11. doi: https://doi.org/10.1007/s00210-024-02963-6
74. Ye JM, Deng T, Zhang JB. Influence of paeonol on expression of COX-2 and p27 in HT-29 cells. World J Gastroenterol. 2009;15(35):4410. doi: https://doi.org/10.3748/wjg.15.4410
75. Li M, Tan SY, Zhang J, You HX. Effects of paeonol on intracellular calcium concentration and expression of RUNX3 in LoVo human colon cancer cells. Mol Med Rep. 2013;7(5):1425−30. doi: https://doi.org/10.3892/mmr.2013.1372
76. Li M, Tan SY, Wang XF. Paeonol exerts an anticancer effect on human colorectal cancer cells through inhibition of PGE2 synthesis and COX-2 expression. Oncol Rep. 2014;32(6):2845−53. doi: https://doi.org/10.3892/or.2014.3543
77. Li M, Tan SY, Yu YJ. Paeonol suppresses invasion, migration, and epithelial-to-mesenchymal transition in colorectal cancer cells through inhibition of COX-2 and PGE2. Res Sq. 2020 [Preprint]. doi: https://doi.org/10.21203/rs.3.rs-16564/v1
78. Liu LH, Shi RJ, Chen ZC. Paeonol exerts anti?tumor activity against colorectal cancer cells by inducing G0/G1 phase arrest and cell apoptosis via inhibiting the Wnt/β?catenin signaling pathway. Int J Mol Med. 2020;46(2):675−84. doi: https://doi.org/10.3892/ijmm.2020.4629
79. Li N, Fan LL, Sun GP, Wan XA, Wang ZG, Wu Q, et al. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World J Gastroenterol. 2010;16(35):4483. doi: https://doi.org/10.3748/wjg.v16.i35.4483
80. Yang S, Wang X, Zhong G. Paeonol inhibits the growth of gastric cancer cells via suppressing HULC expression. Int J Clin Exp Med. 2016;9(7):13900−8.
81. Fu J, Yu L, Luo J, Huo R, Zhu B. Paeonol induces the apoptosis of the SGC?7901 gastric cancer cell line by downregulating ERBB2 and inhibiting the NF?κB signaling pathway. Int J Mol Med. 2018;42(3):1473−83. doi: https://doi.org/10.3892/ijmm.2018.3704
82. Li M, Cai O, Yu Y, Tan S. Paeonol inhibits the malignancy of apatinib-resistant gastric cancer cells via LINC00665/miR-665/MAPK1 axis. Phytomedicine. 2022;96:153903. doi: https://doi.org/10.1016/j.phymed.2021.153903
83. Lyu ZK, Li CL, Jin Y, Liu YZ, Zhang X, Zhang F, et al. Paeonol exerts potential activities to inhibit the growth, migration and invasion of human gastric cancer BGC823 cells via downregulating MMP?2 and MMP?9. Mol Med Rep. 2017;16(5):7513−9. doi: https://doi.org/10.3892/mmr.2017.7576
84. Yin J, Wu N, Zeng F, Cheng C, Kang K, Yang H. Paeonol induces apoptosis in human ovarian cancer cells. Acta Histochem. 2013;115(8):835−9. doi: https://doi.org/10.10.16/j.acthis.2013.04.004
85. Li B, Yang J, Hong L, Tang J, Li Q, Fu Q. Paeonol induces apoptosis of ovarian cancer cells through the AKT/GSK-3β signaling pathway. Int J Clin Exp Med. 2017;10(7): 10170−8.
86. Zhou HM, Sun QX, Cheng Y. Paeonol enhances the sensitivity of human ovarian cancer cells to radiotherapy-induced apoptosis due to down-regulation of phosphatidylinositol-3-kinase/Akt/phosphatase and tensin homolog pathway and inhibition of vascular endothelial growth factor. Exp Ther Med. 2017;14(4):3213−20. doi: https://doi.org/10.3892/etm.2017.4877
87. Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 2019;10(8):609. doi: https://doi.org/10.1038/s41419-019-1849-x
88. Zhou YX, Gong XH, Zhang H, Peng C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed Pharmacother. 2020;130:110505. doi: https://doi.org/10.1016/j.biopha.2020.110505
89. Manayi A, Omidpanah S, Barreca D, Ficarra S, Daglia M, Nabavi SF, et al. Neuroprotective effects of paeoniflorin in neurodegenerative diseases of the central nervous system. Phytochem Rev. 2017;16:1173−81. doi: https://doi.org/10.1007/s11101-017-9527-z
90. Hong H, Lu X, Wu C, Chen J, Chen C, Zhang J, et al. A review for the pharmacological effects of paeoniflorin in the nervous system. Front Pharmacol. 2022;13:898955. doi: https://doi.org/10.3389/fphar.2022.898955
91. Wang XL, Feng ST, Wang YT, Chen NH, Wang ZZ, Zhang Y. Paeoniflorin: a neuroprotective monoterpenoid glycoside with promising anti-depressive properties. Phytomedicine. 2021;90:153669. doi: https://doi.org/10.1016/j.phymed.2021.153669
92. Zhang L, Li DC, Liu LF. Paeonol: pharmacological effects and mechanisms of action. Int Immunopharmacol. 2019;72:413−21. doi: https://doi.org/10.1016/j.intimp.2019.04.033
93. Lee B, Shin YW, Bae EA, Han SJ, Kim JS, Kang SS, et al. Antiallergic effect of the root of Paeonia lactiflora and its constituents paeoniflorin and paeonol. Arch Pharm Res. 2008;31:445−50. doi: https://doi.org/10.1007/s12272-001-1177-6
94. Zhu YL, Wang LY, Wang JX, Wang C, Wang CL, Zhao DP, et al. Protective effects of paeoniflorin and albiflorin on chemotherapy-induced myelosuppression in mice. Chin J Nat Med. 2016;14(8):599−606. doi: https://doi.org/10.3724/SP.J.1009.2016.00599
95. Zhou J, Wang L, Wang J, Wang C, Yang Z, Wang C, et al. Paeoniflorin and albiflorin attenuate neuropathic pain via MAPK pathway in chronic constriction injury rats. Evid Based Complement Alternat Med. 2016;2016: 8082753. doi: https://doi.org/10.1155/2016/8082753
96. Nizamutdinova IT, Jin YC, Kim JS, Yean MH, Kang SS, Kim YS, et al. Paeonol and paeoniflorin, the main active principles of Paeonia albiflora, protect the heart from myocardial ischemia/reperfusion injury in rats. Planta Med. 2008;74(1):14−8. doi: https://doi.org/10.1055/s-2007-993775
97. Sun M, Huang L, Zhu J, Bu W, Sun J, Fang Z. Screening nephroprotective compounds from cortex Moutan by mesangial cell extraction and UPLC. Arch Pharm Res. 2015;38:1044−53. doi: https://doi.org/10.1007/s12272-014-0469-3
98. Sun L, Liu L, Zong S, Wang Z, Zhou J, Xu Z, et al. Traditional Chinese medicine Guizhi Fuling capsule used for therapy of dysmenorrhea via attenuating uterus contraction. J Ethnopharmacol. 2016;191:273−9. doi: https://doi.org/10.1016/j.jep.2016.06.042
99. Wang X, Shi Y, Xu L, Wang Z, Wang Y, Shi W, et al. Traditional Chinese medicine prescription Guizhi Fuling pills in the treatment of endometriosis. Int J Med Sci. 2021;18(11):2401. doi: https://doi.org/10.7150/ijms.55789
Year
Month