Meropenem trihydrate (MPN), pivotal in antimicrobial therapeutics, necessitates accurate analytical methods for its quantification across pharmaceutical formulations. The research aimed to develop a Quality by Design (QbD)-driven high-performance liquid chromatography (HPLC) method and validate it for the quantification of MPN in traditional and novel formulations, with a focus on environmental sustainability. The study employed a QbD approach to develop an HPLC method, ensuring its robustness and adaptability. The method’s universality was evaluated in both traditional powders for injection formulation and a novel beta-cyclodextrin nanosponges formulation. Rigorous validation was conducted per the International Conference on Harmonisation Q2 (R1) guidelines, including extensive stability and degradation studies to ascertain the method’s tenacity under multifarious conditions. The QbD-driven HPLC method showcased impeccable precision and accuracy, with a recovery rate of 99% for the marketed product and an encapsulation efficiency of 88.7% for nanosponges. Furthermore, seven different green analytical chemistry tools were used, and they indicated a significant reduction in environmental impact compared to pre-existing methodologies. In conclusion, our QbD-driven HPLC method for MPN quantification melds technical prowess with environmental responsibility, signifying a noteworthy stride in pharmaceutical research. The method’s high precision and stability assessment provide clinicians with a reliable tool for ensuring accurate dosing in critically ill patients, ultimately enhancing therapeutic efficacy and reducing treatment failure risks. Furthermore, the method supports sustainable drug analysis, minimizing ecological hazards associated with pharmaceutical waste. The method’s adaptability and greenness set a benchmark for future analytical methodologies, emphasizing analytical rigor, and ecological conscientiousness.
Ashwini T, Garg S, Shenoy PA, Chandrashekhar R, Nayak Y, Nayak UY. A quality by design approach with comprehensive green analytical chemistry assessment: Development, validation, and application of a high-performance liquid chromatographic method for quantifying meropenem trihydrate in nanosponges and marketed formulations. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.236517
1. Flockton TR, Schnorbus L, Araujo A, Adams J, Hammel M, Perez LJ. Inhibition of Pseudomonas aeruginosa biofilm formation with surface modified polymeric nanoparticles. Pathogens. 2019;8(2):55. https://doi.org/10.3390/pathogens8020055 | |
2. Sommer R, Wagner S, Rox K, Varrot A, Hauck D, Wamhoff EC, et al. Glycomimetic, orally bioavailable LecB inhibitors block biofilm formation of Pseudomonas aeruginosa. J Am Chem Soc. 2018;140:2537-45. https://doi.org/10.1021/jacs.7b11133 | |
3. Iyer M. Antimicrobial resistance is rising in India, says ICMR report. Times of India. 2021. | |
4. Centers for Disease Control and Preventions. Antibiotic resistance threats report. 2019 [cited 2023 May 17]. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html | |
5. World Health Organization. Antimicrobial resistance. Geneva Switzerland: World Health Organization; 2021 Nov 17 [cited 2023 May 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance | |
6. Memar MY, Yekani M, Ghanbari H, Shahi S, Sharifi S, Maleki Dizaj S. Biocompatibility, cytotoxicity and antibacterial effects of meropenem-loaded mesoporous silica nanoparticles against carbapenem-resistant Enterobacteriaceae. Artif Cells Nanomed Biotechnol. 2020;48:1354-61. https://doi.org/10.1080/21691401.2020.1850466 | |
7. Mhango EKG, Kalhapure RS, Jadhav M, Sonawane SJ, Mocktar C, Vepuri S, et al. Preparation and optimization of meropenem-loaded solid lipid nanoparticles: in vitro evaluation and molecular modeling. AAPS PharmSciTech. 2017;18:2011-25. https://doi.org/10.1208/s12249-016-0675-z | |
8. Drulis-Kawa Z, Gubernator J, Dorotkiewicz-Jach A, Doroszkiewicz W, Kozubek A. A comparison of the in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell Mol Biol Lett. 2006;11(3):360-75. https://doi.org/10.2478/s11658-006-0030-6 | |
9. Singh H, Du J, Singh P, Yi TH. Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application. J Pharm Anal. 2018;8:258-64. https://doi.org/10.1016/j.jpha.2018.04.004 | |
10. Sreekanth Reddy O, Subha MCS, Jithendra T, Madhavi C, Chowdoji Rao K. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery. J Pharm Anal. 2021;11:191-9. https://doi.org/10.1016/j.jpha.2020.07.002 | |
11. Mendez ASL, Steppe M, Schapoval EES. Validation of HPLC and UV spectrophotometric methods for the determination of meropenem in pharmaceutical dosage form. J Pharm Biomed Anal. 2003;33:947-54. https://doi.org/10.1016/S0731-7085(03)00366-2 | |
12. Milla P, Ferrari F, Muntoni E, Sartori M, Ronco C, Arpicco S. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J Chromatogr B. 2020;1148:122151. https://doi.org/10.1016/j.jchromb.2020.122151 | |
13. Paal M, Zoller M, Schuster C, Vogeser M, Schütze G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC-MS/MS method. J Pharm Biomed Anal. 2018;152:102-10. https://doi.org/10.1016/j.jpba.2018.01.031 | |
14. Roth T, Fiedler S, Mihai S, Parsch H. Determination of meropenem levels in human serum by high-performance liquid chromatography with ultraviolet detection. Biomed Chromatogr. 2017;31:e3880. https://doi.org/10.1002/bmc.3880 | |
15. Rakete S, Schuster C, Paal M, Vogeser M. An isotope-dilution LC-MS/MS method for the simultaneous quantification of meropenem and its open-ring metabolite in serum. J Pharm Biomed Anal. 2021;197:113944. https://doi.org/10.1016/j.jpba.2021.113944 | |
16. Krná? D, Reiffová K, Rolinski B. A new HPLC-MS/MS analytical method for quantification of tazobactam, piperacillin, and meropenem in human plasma. J Sep Sci. 2021;44:2744-53. https://doi.org/10.1002/jssc.202100067 | |
17. Gorantla S, Saha RN, Singhvi G. Design of experiment-driven stability-indicating RP-HPLC method for the determination of tofacitinib in nanoparticles and skin matrix. Futur J Pharm Sci. 2021;7:180. https://doi.org/10.1186/s43094-021-00325-0 | |
18. Madhu S, Komala M, Pandian P. Formulation development and characterization of withaferin-a loaded polymeric nanoparticles for alzheimer’s disease. Bionanoscience. 2021;11:559-66. https://doi.org/10.1007/s12668-020-00819-w | |
19. Musmade KP, Trilok M, Dengale SJ , Bhat K, Reddy MS, Musmade PB, et al. Development and validation of liquid chromatographic method for estimation of naringin in nanoformulation. J Pharm (Cairo). 2014;2014:1-8. https://doi.org/10.1155/2014/864901 | |
20. Khanum R, Mallikarjun C, Qureshi MJ, Mohandas K, Rathbone MJ. Development and validation of a RP-HPLC method for the detection of meropenem as a pure compound, in a pharmaceutical dosage form and post thermal induced degradation. Int J Pharm Pharm Sci. 6(4):149-52. Available from: http://whatsthedose.com/spl/0409-3505.html | |
21. Rao Narala S, Saraswathi K. RP-HPLC and visible spectrophotometric methods for the estimation of meropenem in pure and pharmaceutical formulations. Int J ChemTech Res. 2011;3:605-9. | |
22. Kazanova AM, Stepanova ES, Makarenkova LM, Chistyakov VV, Zyryanov SK, Senchenko SP. Development and validation of a quantitative determination method for meropenem in blood plasma for therapeutic drug monitoring. Pharm Chem J. 2020;54:414-8. https://doi.org/10.1007/s11094-020-02212-z | |
23. Rao LV, Ramu G, Kumar MS, Rambabu C. Reverse phase HPLC and visible spectrophotometric methods for the determination of meropenem in pure and pharmaceutical dosage form. Int J PharmTech Res. 2012;4:957-62. | |
24. Farin D, Kitzes-Cohen R, Piva G, Gozlan I. High performance liquid chromatography method for the determination of meropenem in human plasma. Chromatographia. 1999 Mar;49:253-5. https://doi.org/10.1007/BF02467552 | |
25. Lee HS, Shim HO, Yu SR. High-performance liquid chromatographic determination of meropenem in rat plasma using column-switching. Chromatographia. 1996 Apr;42:405-8. https://doi.org/10.1007/BF02272131 | |
26. Cao H, Yin L, Cao H, Guo H, Ren W, Li Y, et al. A sensitive and selective HPLC-MS3 method for therapeutic drug monitoring of meropenem and its validation by comparison with HPLC-MS2 methods. J Sep Sci. 2022;45:1683-92. https://doi.org/10.1002/jssc.202200064 | |
27. Martens-Lobenhoffer J, Bode-Böger SM. Quantification of meropenem in human plasma by HILIC-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1046:13-7. https://doi.org/10.1016/j.jchromb.2017.01.016 | |
28. Yang P, Zhang X, Zhou C, Zhai S, Wang C, Yang L. Determination of free and total meropenem levels in human plasma and its application for the consistency evaluation of generic drugs. Rapid Commun Mass Spectrom. 2023 Mar 15;37(5):e9460. https://doi.org/10.1002/rcm.9460 | |
29. Negi V, Chander V, Singh R, Sharma B, Singh P, Upadhaya K. Method development and validation of meropenem in pharmaceutical dosage form by RP-HPLC. Indian J Chem Technol. 2017;24:441-6. | |
30. Chang P, Dai LL, Zhang DJ, Wang BJ, Guo RC. Determination of meropenem in human plasma by HPLC: validation and its application to pharmacokinetic study. Lat Am J Pharm. 2014 Jan 1;33:870-4. | |
31. Ikeda K, Ikawa K, Morikawa N, Miki M, Nishimura S, Kobayashi M. High-performance liquid chromatography with ultraviolet detection for real-time therapeutic drug monitoring of meropenem in plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;856:371-5. https://doi.org/10.1016/j.jchromb.2007.05.043 | |
32. Elkhaïli H, Niedergang S, Pompei D, Linger L, Leveque D, Jehl F. High-performance liquid chromatographic assay for meropenem in serum. J Chromatogr B Biomed Appl. 1996 Nov 8;686(1):19-26. https://doi.org/10.1016/S0378-4347(96)00205-8 | |
33. Al-Meshal MA, Ramadan MA, Lotfi KM, Shibl AM. Determination of meropenem in plasma by high-performance liquid chromatography and a microbiological method. J Clin Pharm Ther. 1995 Jun;20(3):159-63. https://doi.org/10.1111/j.1365-2710.1995.tb00642.x | |
34. Gopalan D, Patil PH, Jagadish PC, Kini SG, Alex AT, Udupa N, et al. QbD-driven HPLC method for the quantification of rivastigmine in rat plasma and brain for pharmacokinetics study. J Appl Pharm Sci. 2022;12:56-67. https://doi.org/10.7324/JAPS.2022.120606 | |
35. Bhaskaran NA, Kumar L, Reddy MS, Pai GK. An analytical ‘quality by design’ approach in RP-HPLC method development and validation for reliable and rapid estimation of irinotecan in an injectable formulation. Acta Pharma. 2021;71:57-79. https://doi.org/10.2478/acph-2021-0008 | |
36. Kumar L, Sreenivasa Reddy M, Managuli RS, Pai KG. Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharm J. 2015;23:549-55. https://doi.org/10.1016/j.jsps.2015.02.001 | |
37. Patil PH, Desai M, Rao RR, Mutalik S, Shenoy GG, Rao M, et al. Assessment of pH-shift drug interactions of palbociclib by in vitro micro-dissolution in bio relevant media: an analytical QbD-driven RP-HPLC method optimization. J Appl Pharm Sci. 2022;12:78-87. | |
38. Hemdan A, Magdy R, Farouk M, Fares NV. Central composite design as an analytical optimization tool for the development of eco-friendly HPLC-PDA methods for two antihypertensive mixtures containing the angiotensin receptor blocker Valsartan: greenness assessment by four evaluation tools. Microchem J. 2022 Dec 1;183:108105. https://doi.org/10.1016/j.microc.2022.108105 | |
39. P?otka-Wasylka J. A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta. 2018;181:204-9. https://doi.org/10.1016/j.talanta.2018.01.013 | |
40. Ferreira SS, Brito TA, Santana AP, Guimarães TG, Lamarca RS, Ferreira KC, et al. Greenness of procedures using NADES in the preparation of vegetal samples: comparison of five green metrics. Talanta Open. 2022 Dec 1;6:100131. https://doi.org/10.1016/j.talo.2022.100131 | |
41. Amin KFM. Evaluation of greenness and whiteness assessment of chemometric assisted techniques for simultaneous determination of canagliflozin, sitagliptin, metformin, pioglitazone, and glimepiride in a quinary mixture. Sustain Chem Pharm. 2023 Oct 1;35:101181. https://doi.org/10.1016/j.scp.2023.101181 | |
42. Abdallah NA, Fathy ME, Tolba MM, El-Brashy AM, Ibrahim FA. A quality-by-design eco-friendly UV-HPLC method for the determination of four drugs used to treat symptoms of common cold and COVID-19. Sci Rep. 2023 Jan 28;13(1):1616. https://doi.org/10.1038/s41598-023-28737-3 | |
43. Shaaban H. The ecological impact of liquid chromatographic methods reported for bioanalysis of COVID-19 drug, hydroxychloroquine: insights on greenness assessment. Microchem J. 2023 Jan 1;184:108145. https://doi.org/10.1016/j.microc.2022.108145 | |
44. International Council for Harmonisation. Committee for Human Medicinal Products ICH guideline Q8 (R2) on pharmaceutical development. 2017 [cited 2023 May 18]. Available from: www.ema.europa.eu/contact | |
45. International Council for Harmonisation. ICH topic Q 2 (R1) validation of analytical procedures: text and methodology. 1995 [cited 2023 May 18]. Available from: http://www.emea.eu.int | |
46. International Council for Harmonisation. ICH guideline Q14 on analytical procedure development. 2022 [cited 2023 May 18]. Available from: www.ema.europa.eu/contact | |
47. Miriam Marques S, Shirodkar RK, Kumar L. Analytical ‘Quality-by-Design’ paradigm in development of a RP-HPLC method for the estimation of cilnidipine in nanoformulations: forced degradation studies and mathematical modelling of in-vitro release studies. Microchem J. 2023 Oct 1;193:109124. https://doi.org/10.1016/j.microc.2023.109124 | |
48. Mullick P, Mutalik SP, Hegde AR, Pandey A, Jagadish PC, Kini SG, et al. Simultaneous estimation of Apremilast and betamethasone Dipropionate in microsponge-based topical formulation using a stability indicating RP-HPLC method: a quality-by-design approach. J Chromatogr Sci. 2021;59:928-40. https://doi.org/10.1093/chromsci/bmab016 | |
49. International Conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ich harmonised tripartite guideline validation of analytical procedures: text and methodology Q2(R1). November 2005. | |
50. Padya BS, Hegde AR, Mutalik SP, Biswas S, Mutalik S. Analytical and bioanalytical HPLC method for simultaneous estimation of 5-fluorouracil and sonidegib. Bioanalysis. 2022;14:29-45. https://doi.org/10.4155/bio-2021-0212 | |
51. Mutalik SP, Mullick P, Pandey A, Kulkarni SS, Mutalik S. Box-Behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine co-loaded in nano-liposomes. J Sep Sci. 2021;44:2917-31. https://doi.org/10.1002/jssc.202100152 | |
52. Asela I, Donoso-Gonzalez O, Yutronic N, Sierpe R. β-cyclodextrin-based nanosponges functionalized with drugs and gold nanoparticles. Pharmaceutics. 2021 Apr 8;13(4):513. https://doi.org/10.3390/pharmaceutics13040513 | |
53. Imam MS, Abdelrahman MM. How environmentally friendly is the analytical process? A paradigm overview of ten greenness assessment metric approaches for analytical methods. Trends Environ Anal Chem. 2023 Jun 1;38:e00202. https://doi.org/10.1016/j.teac.2023.e00202 | |
54. Naguib IA, Abdelaleem EA, Emam AA, Ali NW, Abdallah FF. Development and validation of HPTLC and green HPLC methods for determination of furosemide, spironolactone and canrenone, in pure forms, tablets and spiked human plasma. Biomed Chromatogr. 2018 Oct;32(10):e4304. https://doi.org/10.1002/bmc.4304 | |
55. Kannaiah KP, Sugumaran A. Eco-friendly multivariant green analytical technique for the estimation of ketoconazole by UV spectroscopy in bulk and cream formulation. Quim Nova. 2022;45:23-30. https://doi.org/10.21577/0100-4042.20170798 | |
56. Gamal M, Naguib IA, Panda DS, Abdallah FF. Comparative study of four greenness assessment tools for selection of greenest analytical method for assay of hyoscine: N-butyl bromide. Anal Methods. 2021;13:369-80. https://doi.org/10.1039/D0AY02169E | |
57. Ga?uszka A, Migaszewski ZM, Konieczka P, Namie?nik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC - Trends Anal Chem. 2012;37:61-72. https://doi.org/10.1016/j.trac.2012.03.013 | |
58. Elbordiny HS, Elonsy SM, Daabees HG, Belal TS. Development and comprehensive greenness assessment for MEKC and HPTLC methods for simultaneous estimation of sertaconazole with two co-formulated preservatives in pharmaceutical dosage forms. Sustain Chem Pharm. 2022 Apr 1;25:100580. https://doi.org/10.1016/j.scp.2021.100580 | |
59. Moema D, Makwakwa TA, Gebreyohannes BE, Dube S, Nindi MM. Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography: greenness assessment using National Environmental Methods Index Label (NEMI), green analytical procedure index (GAPI), Analytical GREEnness metric (AGREE), and Eco Scale. J Food Compos Anal. 2023 Apr 1;117:105131. https://doi.org/10.1016/j.jfca.2023.105131 | |
60. Gaber Y, Törnvall U, Kumar MA, Amin MA, Hatti-Kaul R. HPLC-EAT (Environmental Assessment Tool): a tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem. 2011;13:2021-5. https://doi.org/10.1039/c0gc00667j | |
61. Hartman R, Helmy R, Al-Sayah M, Welch CJ. Analytical Method Volume Intensity (AMVI): a green chemistry metric for HPLC methodology in the pharmaceutical industry. Green Chem. 2011;13:934-9. https://doi.org/10.1039/c0gc00524j | |
62. El-Maraghy CM. Implementation of green chemistry to develop HPLC/UV and HPTLC methods for the quality control of Fluconazole in presence of two official impurities in drug substance and pharmaceutical formulations. Sustain Chem Pharm. 2023 Jun 1;33:101124. https://doi.org/10.1016/j.scp.2023.101124 | |
63. P?otka-Wasylka J, Wojnowski W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem. 2021;23:8657-65. https://doi.org/10.1039/D1GC02318G | |
64. Chanduluru HK, Sugumaran A. Estimation of pitavastatin and ezetimibe using UPLC by a combined approach of analytical quality by design with green analytical technique. Acta Chromatogr. 2022;34:361-72. https://doi.org/10.1556/1326.2021.00949 |
Year
Month