Development of spectrophotometric methods for simultaneous determination of Diltiazem and Naringin

Anju Chettri Bhupendra Shrestha   

Open Access   

Published:  Mar 11, 2025

DOI: 10.7324/JAPS.2025.159183
Abstract

Novel, simple, and accurate spectrophotometric techniques, i.e., the Q-ratio method and absorptivity factor method were developed to simultaneously estimate Diltiazem and Naringin in a synthetic mixture. In the Q-ratio method, the analytical wavelengths used for the estimation of two drugs were 257 and 275 nm. The method was based on the measurement of absorbance at two different wavelengths, one of which is taken as the λmax of naringin and the other from the isoabsorptive point discovered by overlapping the spectra of two drugs. Whereas for the absorptivity factor method, the analytical wavelengths used were the absorptivity factor points, i.e., 229 and 247 nm obtained after overlapping the spectra of Diltiazem and Naringin at different concentrations. For both methods, methanol was used as a solvent. In these two developed and validated methods, the correlation coefficient observed for linearity was near 1, and the % RSD for precision was less than 2%. All other validation parameters conducted passed the criteria set forth in the International Conference on Harmonization guidelines. Therefore, these techniques can be successfully used for routine quality control tests.


Keyword:     Diltiazem Naringin Q-ratio method absorptivity factor method


Citation:

Chettri A, Shrestha B. Development of spectrophotometric methods for simultaneous determination of Diltiazem and Naringin. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.159183

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Mazzo DJ, Obetz CL, Shuster J. Diltiazem hydrochloride. In: Brittain HG, editor. Analytical profiles of drug substances and excipients. Cambridge, MA: Academic Press; 1994. pp 53-98. https://doi.org/10.1016/S0099-5428(08)60600-0

2. Akbari J, Saeedi M, Semnani KM, Ghasemi M, Eshaghi M, Eghbali M, et al. An ecofriendly and hopeful promise platform for delivering hydrophilic wound healing agents in topical administration for wound disorder: diltiazemloaded niosomes. J Pharm Innov. 2023;18:1111-27. https://doi.org/10.1007/s12247-023-09710-z

3. Samaha D, Shehayeb R, Kyriacos S. Modeling and comparison of dissolution profiles of diltiazem modified-release formulations. Dissolution Technol. 2009;16(2):41-6. https://doi.org/10.14227/DT160209P41

4. Arafat MO. Simple HPLC validated method for the determination of diltiazem hydrochloride in human plasma. Int J Pharm Pharm Sci. 2014;6(9):213-6.

5. Rovei V, Mitchard M, Morselli PL. Simple, sensitive and specific gas chromatographic method for quantification of diltiazem in human body fluids. J Chromatogr A. 1977;138(2):391-8. https://doi.org/10.1016/S0021-9673(00)94974-4

6. Iswariya T, Pradesh A, Gupta S. Bioavailability enhancers: an overview. IJARIIT. 2019;5(2):825-9.

7. PubChem. Bethesda, MD: National Library of Medicine (US). National Center for Biotechnology Information [Internet]; 2004 [cited 2024 Dec 21]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Naringin

8. Choi JS, Han HK. Enhanced oral exposure of diltiazem by the concomitant use of naringin in rats. Int J Pharm. 2005;305(1-2):122-8. https://doi.org/10.1016/j.ijpharm.2005.09.004

9. Patil BR, Bhusnure OG, Paul BN, Ghodke AY, Mulaje SS. Analytical method development and validation for the estimation of diltiazem hydrochloride in bulk and pharmaceutical dosage form by RP-HPLC. Int J drug Regul Aff. 2014;2(2):78-84. https://doi.org/10.22270/ijdra.v2i2.133

10. Devarajan PV, Dhavse VV. High-performance thin-layer chromatographic determination of diltiazem hydrochloride as bulk drug and in pharmaceutical preparations. J Chromatogr B. 1998;706(2):362-6. https://doi.org/10.1016/S0378-4347(97)00548-3

11. Bao C, Wang J, Tong X, Tang X, Wang Q. The fluorescence spectroscopic studies on the interaction of diltiazem hydrochloride with bovine serum albumin. J Appl Life Sci Int. 2018;18(3):1-9. https://doi.org/10.9734/JALSI/2018/43574

12. Alebi?-Kolbah T, Plavši? F. Determination of serum diltiazem concentrations in a pharmacokinetic study using gas chromatography with electron capture detection. J Pharm Biomed Anal. 1990;8(8-12):915-8. https://doi.org/10.1016/0731-7085(90)80142-C

13. Vergote GJ, Vervaet C, Remon JP, Haemers T, Verpoort F. Near-infrared FT-raman spectroscopy as a rapid analytical tool for the determination of diltiazem hydrochloride in tablets. Eur J Pharm Sci. 2002;16(1-2):63-7. https://doi.org/10.1016/S0928-0987(02)00058-1

14. Sultana N, Arayne MS, Ali SN. An ultra-sensitive and selective LC-UV method for the simultaneous determination of pravastatin, diltiazem, naproxen sodium and meloxicam in API, pharmaceutical formulations and human serum. Am J Appl Chem. 2013;1(1):1-8. https://doi.org/10.11648/j.ajac.20130101.11

15. Bajetha D, Mangla B, Joshi SK. Method development and validation for the quantitation estimation of diltiazem hcl in tablet dosage form by RP-UPLC. Int J Innov Pharm Sci Res. 2016;4(4):340-52.

16. Sugihara J, Sugawara Y, Ando H, Harigaya S, Etoh A, Kohno K. Studies on the metabolism of diltiazem in man. J Pharmacobio-Dyn. 1984;7(1):24-32. https://doi.org/10.1248/bpb1978.7.24

17. Xiong X, Jiang J, Duan J, Xie Y, Wang J, Zhai S. Development and validation of a sensitive liquid chromatography-tandem mass spectrometry method for the determination of naringin and its metabolite, naringenin, in human plasma. J Chromatogr Sci. 2014;52(7):654-60. https://doi.org/10.1093/chromsci/bmt095

18. Akiyama T, Yamada T, Maitani T. Analysis of enzymatically glucosylated flavonoids by capillary electrophoresis. J Chromatogr A. 2000;895(1-2):279-83. https://doi.org/10.1016/S0021-9673(00)00369-1

19. Ishii K, Furuta T, Kasuya Y. Determination of naringin and naringenin in human urine by high performance liquid chromatography utilizing solid-phase extraction. J Chromatogr B. 1997;704(1-2):299-305. https://doi.org/10.1016/S0378-4347(97)00474-X

20. Alam P, Siddiqui NA, Al-Rehaily AJ, Alajmi MF, Basudan OA, Khan TH. Stability-indicating densitometric high-performance thin-layer chromatographic method for the quantitative analysis of biomarker naringin in the leaves and stems of Rumex vesicarius L. JPC-J Planar Chromat. 2014;27(3):204-9. https://doi.org/10.1556/JPC.27.2014.3.10

21. Wen J, Qiao Y, Yang J, Liu X, Song Y, Liu Z, et al. UPLC-MS/MS determination of paeoniflorin, naringin, naringenin and glycyrrhetinic acid in rat plasma and its application to a pharmacokinetic study after oral administration of Si-Ni-San decoction. J Pharm Biomed Anal. 2012;66:271-7. https://doi.org/10.1016/j.jpba.2012.03.040

22. Hakim A, Loka IN, Prastiwi NW. New method for isolation of naringin compound from citrus maxima. Nat Resour. 2019;10(8):299-304. https://doi.org/10.4236/nr.2019.108019

23. Patel D, Panchal D, Patel K, Dalwadi M, Upadhyay U. A review on UV visible spectroscopy. IJCRT. 2022;10(10):399-411.

24. Samir A, Salem H, Abdelkawy M. New developed spectrophotometric method for simultaneous determination of salmeterol xinafoate and fluticasone propionate in bulk powder and seritide® diskus inhalation. Bull Fac Pharm Cairo Univ. 2012;50(2):121-6. https://doi.org/10.1016/j.bfopcu.2012.07.006

Article Metrics
27 Views 0 Downloads 27 Total

Year

Month

Related Search

By author names