Diabetes mellitus (DM) is a chronic metabolic disorder marked by elevated blood glucose levels due to insufficient insulin production or action. This condition has become a major health concern globally, including in Indonesia. The increasing prevalence of DM in Indonesia poses significant health challenges, prompting exploration of traditional medicinal plants as alternative treatments. Ciplukan (Physalis angulata Linn) is known for its antidiabetic effect in Indonesians. Previous studies showed that the active fraction (AF) increased glucose absorption in C2C12 cells. This study aims to investigate the effect of P. angulata’s AF on insulin receptor substrate-1 (IRS-1) Tyr-612 and Akt Ser-473 phosphorylation in insulin-resistant C2C12 cells. Treatment of well-differentiated C2C12 cells with palmitate was conducted to induce insulin resistance. The insulin-resistant C2C12 cells were divided into four groups: the negative control and the treated groups each with 4-, 12- and 24-hour incubation time. Expression of p-IRS-1 Tyr-612 and p-Akt Ser-473 in insulin-resistant C2C12 cells was measured by a western blot analysis. The AF of P. angulata appeared to have an antidiabetic effect by increasing phosphorylation of IRS-1 Tyr-612 and Akt Ser-473 in insulin-resistant C2C12 cells after 24 hours of incubation (p < 0.05).
Papilaya FB, Wahyuningsih MSH, Syarif RA. Active fraction of Ciplukan (Physalis angulata L.) increases phosphorylation on IRS-1 Tyr-612 and Akt Ser-473 in 24-hour incubation time. J Appl Pharm Sci. 2025. online First. http://doi.org/10.7324/JAPS.2025.225043
1. World Health Organization. Classification of diabetes mellitus 2019. Geneva, Switzerland: World Health Organization; 2019.
2. Freeman AM, Acevedo LA, Pennings N. Insulin resistance. Treasure Island, FL: StatPearls Publishing; 2023. [cited 2023 March 19]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507839/
3. Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol. 2020;10(3):785–809. doi: https://doi.org/10.1002/cphy.c190029
4. ?widerska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, ?liwi?ska A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. In: Szablewski L, editor. Blood glucose levels. London, UK: IntechOpen [Internet]; 2020 [cited 2023 March 17]. doi: https://dx.doi.org/10.5772/intechopen.80402
5. Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α: the two sides of a coin. Diabetes. 2006;55(8):2392–7. doi: https://doi.org/10.2337/db06-0391
6. Langlais P, Yi Z, Finlayson J, Luo M, Mapes R, De Filippis E, et al. Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia. 2011;54(11):2878–89. doi: https://doi.org/10.1007/s00125-011-2271-9
7. Rajendiran D, Packirisamy S, Kanna De N. The PI3K/Akt signaling pathway in type 2 diabetes mellitus. Current advances in biosciences. Namakkal, India: Thanuj International Publishers; 2024. 9–19 pp.
8. Raju P, Mamidala E. Anti-diabetic activity of compound isolated from Physalis angulata fruit extracts in alloxan induced diabetic rats. Am J Sci Med Res. 2015;1(2):40–3. doi: https://doi.org/10.17812/ajsmr2015111
9. Iwansyah AC, Luthfiyanti R, Ardiansyah RCE, Rahman N, Andriana Y, Hamid HA. Antidiabetic activity of Physalis angulata L. fruit juice on streptozotocin-induced diabetic rats. S Afr J Bot. 2022;145:313– 31. doi: https://doi.org/10.1016/j.sajb.2021.08.045
10. Nguyen KNH, Nguyen NVT, Kim KH. Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia. 2021;68(2):501–9. doi: https://doi.org/10.3897/pharmacia.68.e66044
11. Jiao Y, Williams A, Wei N. Quercetin ameliorated insulin resistance via regulating METTL3-mediated N6-methyladenosine modification of PRKD2 mRNA in skeletal muscle and C2C12 myocyte cell line. Nutr Metab Cardiovasc Dis. 2022;32(11):2655–68. doi: https://doi.org/10.1016/j.numecd.2022.06.019
12. Luo K, Huang W, Qiao L, Zhang X, Yan D, Ning Z, et al. Dendrocalamus latiflorus and its component rutin exhibit glucose-lowering activities by inhibiting hepatic glucose production via AKT activation. Acta Pharm Sin B. 2022;12(5):2239–51. doi: https://doi.org/10.1016/j.apsb.2021.11.017
13. Wahyuningsih MSH, Ketut SSW, Aurelia PRP, Nugrahaningsih DAA, Yuniyanti MM. Bioassay-guided fractionation of ciplukan (Physalis angulata L.) monitored by glucose consumption assay and thin layer chromatography on myoblast cells. Majalah Obat Tradis. 2023;28(1):22–30. doi: https://doi.org/10.22146/mot.79783
14. Prasetyo YC. Efek fraksi aktif herba ciplukan (Physalis angulata Linn) terhadap konsumsi glukosa Sel C2C12 myotube resisten insulin [Magister’s thesis]. Yogyakarta, Indonesia: Universitas Gadjah Mada; 2023.
15. American Type Culture Collection. C2C12 CRL-1772. Manassas, VA: American Type Culture Collection; 2021.
16. Pinel A, Morio-Liondore B, Capel F. n-3 Polyunsaturated fatty acids modulate metabolism of insulin-sensitive tissues: implication for the prevention of type 2 diabetes. J Physiol Biochem. 2014;70(2):647– 58. doi: https://doi.org/10.1007/s13105-013-0303-2
17. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191. doi: https://doi.org/10.1101/cshperspect.a009191
18. Ayeleso TB, Ramachela K, Mukwevho E. Aqueous-methanol extracts of orange-fleshed sweet potato (ipomoea batatas) ameliorate oxidative stress and modulate type 2 diabetes associated genes in insulin resistant C2C12 cells. Molecules. 2018;23(8):2058. doi: https://doi.org/10.3390/molecules23082058
19. Rezekiyah S, Lestari WS, Fitriana E, Karwiti W, Riska DM. Reagent temperature variations affect for stability of natrium fluorid (Naf) plasma blood glucoselevels using enzymatic (God-Pap) methods. Jambura. 2021;3(2):10225. doi: https://doi.org/10.35971/jjhsr.v3i2.10225
20. Li Z, Zhu Y, Li C, Tang Y, Jiang Z, Yang M, et al. Liraglutide ameliorates palmitate?induced insulin resistance through inhibiting the IRS?1 serine phosphorylation in mouse skeletal muscle cells. J Endocrinol Invest. 2018;41(9):1097–102. doi: https://doi.org/10.1007/s40618-018-0836-x
21. Sule R, Rivera G, Gomes AV. Western blotting (immunoblotting): history, theory, uses, protocol and problems. BioTechniques. 2023;75:99–114. doi: https://doi.org/10.2144/btn-2022-0034
22. Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J Anesthesiol. 2018;71(5):353–60. doi: https://doi.org/10.4097/kja.d.18.00242
23. Song BR, Alam MB, Lee SH. Terpenoid-rich extract of Dillenia indica L. bark displays antidiabetic action in insulin-resistant C2C12 cells and STZ-induced diabetic mice by attenuation of oxidative stress. Antioxidants. 2022;11(7):1227. doi: https://doi.org/10.3390/antiox11071227
24. Egawa T, Tsuda S, Ma X, Hamada T, Hayashi T. Caffeine modulates phosphorylation of insulin receptor substrate-1 and impairs insulin signal transduction in rat skeletal muscle. J Appl Physiol. 2011;111(6):1629– 36. doi: https://doi.org/10.1152/japplphysiol.00249.2011
25. Mackenzie R, Elliott B. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:55–64. doi: https://doi.org/10.2147/DMSO.S48260
26. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9(1):59–71. doi: https://doi.org/10.1111/j.1582-4934.2005.tb00337.x
27. Crozier A, Clifford MN, Ashihara H. Plant secondary metabolites. Hoboken, NJ: Wiley; 2006. doi: https://doi.org/10.1002/9780470988558
28. Hu W, Li M, Sun W, Li Q, Xi H, Qiu Y, et al. Hirsutine ameliorates hepatic and cardiac insulin resistance in high-fat diet-induced diabetic mice and in vitro models. Pharmacol Res. 2022;177:105917. doi: https://doi.org/10.1016/j.phrs.2021.105917
29. Zhang S, Zhang S, Zhang Y, Wang H, Chen Y, Lu H. Activation of NRF2 by epiberberine improves oxidative stress and insulin resistance in T2DM mice and IR-HepG2 cells in an AMPK dependent manner J Ethnopharmacol. 2024;327:117931. doi: https://doi.org.10.1016/j.jep.2024.117931
30. Zhang H, Hui J, Yang J, Deng J, Fan D. Eurocristatine, a plant alkaloid from Eurotium cristatum, alleviates insulin resistance in db/db diabetic mice via activation of PI3K/AKT signaling pathway. Eur J Pharmacol. 2020;887:173557. doi: https://doi.org/10.1016/j.ejphar.2020.173557
31. Feriotto G, Tagliati F, Costa V, Monesi M, Tabolacci C, Beninati S, et al. α-Pinene, a main component of Pinus essential oils, enhances the expression of insulin-sensitive glucose transporter type 4 in murine skeletal muscle cells. Int J Mol Sci. 2024;25(2):1252. doi: https://doi.org/10.3390/ijms25021252
32. Hu X, Wang S, Xu J, Wang DB, Chen Y, Yang GZ. Triterpenoid saponins from Stauntonia chinensis ameliorate insulin resistance via the AMP-activated protein kinase and IR/IRS-1/PI3K/Akt pathways in insulin-resistant HepG2 cells. Int J Mol Sci. 2014;15(6):10446– 58. doi: https://doi.org/10.3390/ijms150610446
33. Santana-Lima B, Belaunde LHZ, de Souza KD, Rosa ME, de Carvalho JE, Machado-Jr J, et al. Acute kaempferol stimulation induces AKT phosphorylation in HepG2 cells. Life. 2024;14(6):764. doi: https://doi.org/10.3390/life14060764
34. Mokashi P, Khanna A, Pandita N. Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed Pharmacother. 2017;90:268–77. doi: https://doi.org/10.1016/j.biopha.2017.03.047
35. Yousof Ali M, Zaib S, Mizanur Rahman M, Jannat S, Iqbal J, Kyu Park S, et al. Poncirin, an orally active flavonoid exerts antidiabetic complications and improves glucose uptake activating PI3K/Akt signaling pathway in insulin resistant C2C12 cells with anti-glycation capacities. Bioorganic Chem. 2020;102:104061. doi: https://doi.org/10.1016/j.bioorg.2020.104061
Year
Month