Treatment of estrogen through hormone replacement therapy to cause side effects. Rhizophora mucronata extract has potential phytoestrogens from natural ingredients. This study aims to analyze estrogenic activity, druglikeness, and molecular docking as an alternative to estrogen hormone therapy. Estrogenic activity analysis using Way2drug Pass online revealed that the five compounds tested had a Pa value (probability of being active) ≥ 0.3. Druglikeness analysis using the SwissAdme program revealed the potential as medicinal compounds for oral administration meet the provisions of the rule of five. The results of the molecular docking study show that the five compounds interact with the estrogen receptor protein through the formation of hydrogen bonds and alkyl bonds. Zearalenone produces the strongest interaction with the estrogen receptor protein with a binding affinity of -9.23 Kcal/mol and the formation of three hydrogen bonds to the amino acid residues, Glu353, Leu387, and Arg394. Reinforce by data from pathway analysis results, which show that the estrogenic potential of zearalenone is through activation of the estrogen receptor (ESR1), nuclear receptor subfamily 1 (NR112), and androgen receptor with an activation score of 0.795, a binding strength of 0.234, and an inhibition power of 0.318.
Ernawati E, Adam MA, Kristianto S, Sugara TH, Maftuch M, Fahrurrozi F, Widiastuti IM. Estrogenic effect, druglikeness, molecular docking, and pathway analysis of active compounds from fruit flour extract Rhizophora mucronata. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.203140
1. Hamilton KJ, Hewitt SC, Arao Y, Korach KS. Estrogen hormone biology. Curr Top Dev Biol. 2017;125:109–46. doi: https://doi.org/10.1016/bs.ctdb.2016.12.005
2. Lobo RA. Hormone-replacement therapy: current thinking. Nat Rev Endocrinol. 2017;13(4):220–31.
3. Barenberg BJ, Pickett SD. Menopausal hormone therapy BT. In: Shoupe D, editor. Handbook of gynecology. Cham, Switzerland: Springer International Publishing; 2023. pp. 639–47. doi: https://doi.org/10.1007/978-3-031-14881-1_48
4. Fait T. Menopause hormone therapy: latest developments and clinical practice. Drugs Context. 2019;8:1–9.
5. David PS, Sobel T, Sahni S, Mehta J, Kling JM. Menopausal hormone therapy in older women: examining the current balance of evidence. Drugs Aging [Internet]. 2023;40(8):675–83. doi: https://doi.org/10.1007/s40266-023-01043-3
6. Landrum LM, Zuna RE, Walker JL. Endometrial hyperplasia, estrogen therapy, and the prevention of endometrial cancer [Internet]. In: DiSaia PJ, Creasman WT, editors. Clinical gynecologic oncology. 9th ed. Amsterdam, The Netherlands: Elsevier Inc.; 2018. pp. 105–20.e6. doi: https://doi.org/10.1016/B978-0-323-40067-1.00004-8
7. Eliyahu E, Katz MG, Vincek A, Freage-Kahn L, Ravvin S, Tal S, et al. Effects of hormone replacement therapy on women’s lung health and disease. Pulm Ther [Internet]. 2023;9(4):461–77. doi: https://doi.org/10.1007/s41030-023-00240-0
8. Curran M, Wolde T, Vazquez A, Mihulka O, Moore J, Rojas KE. Best practices for hormonal contraception and menopause therapy in women at increased risk for breast cancer. Curr Breast Cancer Rep [Internet]. 2024;16:342–50. doi: https://doi.org/10.1007/s12609-024-00534-5
9. Loizzi V, Dellino M, Cerbone M, Arezzo F, Chiariello G, Lepera A, et al. Hormone replacement therapy in BRCA mutation carriers: how shall we do no harm? Hormones [Internet]. 2023;22(1):19–23. doi: https://doi.org/10.1007/s42000-022-00427-1
10. Gu Y, Han F, Xue M, Wang M, Huang Y. The benefits and risks of menopause hormone therapy for the cardiovascular system in postmenopausal women: a systematic review and meta-analysis. BMC Womens Health [Internet]. 2024;24(1):60. doi: https://doi.org/10.1186/s12905-023-02788-0
11. Mikkola TS, Tuomikoski P, Lyytinen H, Korhonen P, Hoti F, Vattulainen P, et al. Increased cardiovascular mortality risk in women discontinuing postmenopausal hormone therapy. J Clin Endocrinol Metab. 2015;100(12):4588–94. https://doi.org/10.1210/jc.2015-1864
12. Rouhana S, Glen Pyle W. Menopause and the bridge to cardiovascular disease BT. In: Kirshenbaum L, Rabinovich-Nikitin I, editors. Biology of women’s heart health. Cham, Switzerland: Springer International Publishing; 2023. pp. 145–64. doi: https://doi.org/10.1007/978-3-031-39928-2_10
13. Chang WC, Wang JH, Ding DC. Menopausal hormone therapy with conjugated equine estrogen is associated with a higher risk of hemorrhagic stroke than therapy with estradiol: a retrospective population-based cohort study. Maturitas [Internet]. 2022;165(707):72–7. doi: https://doi.org/10.1016/j.maturitas.2022.07.009
14. Hashemzadeh M, Romo R, Arreguin JM, Movahed MR. The effects of estrogen and hormone replacement therapy on cardiovascular systems. Future Cardiol. 2021;17(2):347–53. https://doi.org/10.2217/fca-2020-0054
15. Lee SR, Cho MK, Cho YJ, Chun S, Hong SH, Hwang KR, et al. The 2020 menopausal hormone therapy guidelines. J Menopausal Med. 2020;26(2):69. https://doi.org/10.6118/jmm.20000
16. Rani J, Swati S, Meeta M, Singh SH, Tanvir T, Madan A. Postmenopausal osteoporosis: menopause hormone therapy and selective estrogen receptor modulators. Indian J Orthop [Internet]. 2023;57(s1):105–14. doi: https://doi.org/10.1007/s43465-023-01071-6
17. Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol. 2017;174(11):1263–80. https://doi.org/10.1111/bph.13622
18. Wyse J, Latif S, Gurusinghe S, McCormick J, Weston LA, Stephen CP. Phytoestrogens: a review of their impacts on reproductive physiology and other effects upon grazing livestock. Animals. 2022;12(19):1–17. https://doi.org/10.3390/ani12192709
19. Nikoli? MZ, Caritg O, Jeng Q, Johnson JA, Sun D, Howell KJ, et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. Elife. 2017;6:1–33. https://doi.org/10.7554/eLife.26575
20. Risjani Y, Darmawan A, Putri Renitasari D, Lorma Ayuknita A, Rahma F, Effendi S, et al. Histopathological aberration and 17-β-estradiol imbalance in green mussel Perna viridis population cultured in Java Sea, Indonesia. Egypt J Aquat Res [Internet]. 2022;49:197–203. doi: https://doi.org/10.1016/j.ejar.2022.07.002
21. Yu Z, Jiao Y, Zhao Y, Gu W. Level of Estrogen in females—the different impacts at different life stages. J Pers Med. 2022;12(12):1995. https://doi.org/10.3390/jpm12121995
22. Bacciottini L, Falchetti A, Pampaloni B, Bartolini E, Carossino AM, Brandi ML. Phytoestrogens: food or drug? Clin Cases Miner Bone Metab. 2007;4(2):123–30.
23. Dutta S, Mahalanobish S, Sil PC. Chapter 8?Phytoestrogens as novel therapeutic molecules against breast cancer. In: Brahmachari G, editor. Natural product drug discovery [Internet]. Amsterdam, The Netherlands: Elsevier; 2021. pp. 197–229. Available from: https://www.sciencedirect.com/science/article/pii/B9780128212776000088
24. Kar P, Goyal AK, Das AP, Sen A. Antioxidant and pharmaceutical potential of Clerodendrum L.: an overview. Int J Green Pharm. 2014;8(4):210–6. https://doi.org/10.4103/0973-8258.142671
25. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev [Internet]. 2012;64(SUPPL):4–17. doi: https://doi.org/10.1016/j.addr.2012.09.019
26. Jain AN, Nicholls A. Recommendations for evaluation of computational methods. J Comput Aided Mol Des. 2008;22(3–4):133–9. https://doi.org/10.1007/s10822-008-9196-5
27. Ernawati, Adam MA, Widiastuti IM, Insivitawati E, Nikmatullah M, Riyadi PH, et al. Exploring the anti-menopausal potential of Rhizophora mucronata lam. ethanol extract: a comprehensive study on estrogen receptor β agonist activity. Ilmu Kelaut Indones J Mar Sci. 2024;29(3):414–24. https://doi.org/10.14710/ik.ijms.29.3.414-424
28. Adam M, Talbia H, Ariyanti D, Kristianto S, Chairunnisa N, Aprilia M, et al. Microplastics contamination in environment and marine animals at Kodek Bay, Lombok, Indonesia. Water Air Soil Pollut [Internet]. 2024;235(789):1–16. doi: https://doi.org/10.1007/s11270-024-07607-2
29. Zhu J. Effector CD4+ T lymphocytes. Ref Modul Biomed Sci. 2014;4:1–12. doi: https://doi.org/10.1016/b978-0-12-801238-3.00117-3
30. Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep [Internet]. 2023;13(1):1–18. doi: https://doi.org/10.1038/s41598-023-40160-2
31. Rauf A, Al-Awthan YS, Bahattab O, Shah ZA, Rashid U, Bawazeer S, et al. Potent urease inhibition and in silico docking study of four secondary metabolites isolated from Heterophragma adenophyllum seem. South African J Bot [Internet]. 2021;142:201–5. doi: https://doi.org/10.1016/j.sajb.2021.06.031
32. Ernawati E, Adam MA, Widiastuti IM, Insivitawati E. Physical and chemical characterization of African catfish smoked sausage with different liquid smoke concentrations and immersion durations. E3S Web Conf. 2021;322:04001. https://doi.org/10.1051/e3sconf/202132204001
33. Adam MA, Khumaidi A, Ramli R, Widiastuti IM, Ernawati E, Insivitasti E, et al. Detoxification mechanisms in oxidative stress and reactive oxygen species (ROS) in gills of gambusia fish (Gambusia affinis) exposed to Cadmium. E3S Web Conf. 2021;322:01025. https://doi.org/10.1051/e3sconf/202132201025
Year
Month