Phytochemical compounds against mild cognitive impairment key proteins: An in-silico approach

Cristian Gonzalez-Ruiz Isabel Hidalgo Andrés Portilla-Martínez Iván Rubio-Gayosso Hermelinda Salgado-Ceballos Omar Fabela-Sánchez Jorge Bernal-Hernández Miguel Ortiz-Flores   

Open Access   

Published:  Feb 27, 2025

DOI: 10.7324/JAPS.2025.209505
Abstract

Mild cognitive impairment (MCI) is defined as an intermediate stage between normal age-related cognitive decline and pathological cognitive deterioration associated with aging, which course with alterations in one or more cognitive domains and could progress to a major neurocognitive disorder; we investigate five critical proteins involved in the pathophysiological process of MCI: Glycogen synthase 3-β (GSK3β), β-secretase (BACE1), Glutamate transporter associated protein 3–18 (GTRAP3-18), Pregnane X receptor (PXR), and epidermal growth factor receptor (EGFR). We evaluated 2,568 phytochemical compounds as potential ligands of the best conformations of proteins, minimized with 100 ns of molecular dynamics (MDs), which have biological effects on central nervous system disease. All compounds were subjected to virtual screening to obtain the best ligand based on the docking score, then, 1,000 independent docking assays were performed to corroborate the binding site; Root Mean Square Deviation, frequency, and interacting atoms were calculated. Finally, the MD of the best ligand-protein complex was developed. The top probable ligand for each protein was dioscin for BACE1, quadrigeminal-A for GSK3β and GTRAP3-18, psychotridine for PXR and EGFR. This research emphasizes various phytochemicals that influence dysregulated proteins in MCI, offering details on their binding affinities and molecular interactions at the active sites of each receptor.


Keyword:     Mild cognitive impairment phytochemical compounds virtual screening molecular dynamics β-secretase GSK3β


Citation:

Gonzalez-Ruiz C, Hidalgo I, Portilla-Martínez A, Rubio- Gayosso I, Salgado-Ceballos H, Fabela-Sánchez O, Bernal- Hernández J, Ortiz-Flores M. Phytochemical compounds against mild cognitive impairment key proteins: An in-silico approach. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.221899

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment. Arch Neurol. 1999 Mar 1;56(3):303. https://doi.org/10.1001/archneur.56.3.303

2. Jongsiriyanyong S, Limpawattana P. Mild cognitive impairment in clinical practice: a review article. A J Alzheimer's Dis Other Dementiasr. 2018 Dec 1;33(8):500-7. https://doi.org/10.1177/1533317518791401

3. Mufson EJ, Binder L, Counts SE, DeKosky ST, deToledo-Morrell L, Ginsberg SD, et al. Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol. 2012 Jan 19;123(1):13-30. https://doi.org/10.1007/s00401-011-0884-1

4. Shen Y, Wang H, Sun Q, Yao H, Keegan AP, Mullan M, et al. Increased plasma beta-secretase 1 may predict conversion to Alzheimer's disease dementia in individuals with mild cognitive impairment. Biol Psychiatry. 2018 Mar;83(5):447-55. https://doi.org/10.1016/j.biopsych.2017.02.007

5. Forlenza O V., Torres CA, Talib LL, de Paula VJ, Joaquim HPG, Diniz BS, et al. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer's disease. J Psychiatr Res. 2011 Feb;45(2):220-4. https://doi.org/10.1016/j.jpsychires.2010.06.002

6. Kasper S, Bancher C, Eckert A, Förstl H, Frölich L, Hort J, et al. Management of mild cognitive impairment (MCI): the need for national and international guidelines. World J Biol Psychiatry. 2020 Sep 13;21(8):579-94. https://doi.org/10.1080/15622975.2019.1696473

7. Zhang J, Wang Y, Dong X, Liu J. Crocetin attenuates inflammation and amyloid-β accumulation in APPsw transgenic mice. Immunity Ageing. 2018 Dec 30;15(1):24. https://doi.org/10.1186/s12979-018-0132-9

8. Desideri G, Kwik-Uribe C, Grassi D, Necozione S, Ghiadoni L, Mastroiacovo D, et al. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment. Hypertension. 2012 Sep;60(3):794-801. https://doi.org/10.1161/HYPERTENSIONAHA.112.193060

9. Boespflug EL, Eliassen JC, Dudley JA, Shidler MD, Kalt W, Summer SS, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018 Apr 21;21(4):297-305. https://doi.org/10.1080/1028415X.2017.1287833

10. Kumar Gp, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev. 2012;6(12):81. https://doi.org/10.4103/0973-7847.99898

11. Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer's disease therapy. Lancet Neurol. 2014 Mar;13(3):319-29. https://doi.org/10.1016/S1474-4422(13)70276-X

12. Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, et al. The β-Secretase BACE1 in Alzheimer's Disease. Biol Psychiatry. 2021 Apr;89(8):745-56. https://doi.org/10.1016/j.biopsych.2020.02.001

13. Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N. Crystal Structure of an Active Form of BACE1, an Enzyme Responsible for Amyloid β Protein Production. Mol Cell Biol. 2008 Jun 1;28(11):3663-71. https://doi.org/10.1128/MCB.02185-07

14. Chen G fang, Xu T hai, Yan Y, Zhou Y ren, Jiang Y, Melcher K, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017 Sep 17;38(9):1205-35. https://doi.org/10.1038/aps.2017.28

15. Zhang X, Song W. The role of APP and BACE1 trafficking in APP processing and amyloid-β generation. Alzheimers Res Ther. 2013;5(5):46. https://doi.org/10.1186/alzrt211

16. Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer's disease: the prime pathological player. Int J Biol Macromol. 2020 Nov;163:1599-617. https://doi.org/10.1016/j.ijbiomac.2020.07.327

17. Aoyama K, Nakaki T. Inhibition of GTRAP3-18 may increase neuroprotective glutathione (GSH) synthesis. Int J Mol Sci. 2012 Sep 20;13(12):12017-35. https://doi.org/10.3390/ijms130912017

18. Watabe M, Aoyama K, Nakaki T. A dominant role of GTRAP3-18 in neuronal glutathione synthesis. J Neurosci. 2008 Sep 17;28(38): 9404-13. https://doi.org/10.1523/JNEUROSCI.3351-08.2008

19. Chai AB, Leung GKF, Callaghan R, Gelissen IC. P-glycoprotein: a role in the export of amyloid-β in Alzheimer's disease? FEBS J. 2020 Feb 9;287(4):612-25. https://doi.org/10.1111/febs.15148

20. Ott M, Fricker G, Bauer B. Pregnane X Receptor (PXR) regulates P-glycoprotein at the blood-brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Therap. 2009 Apr;329(1):141-9. https://doi.org/10.1124/jpet.108.149690

21. Hussain B, Fang C, Chang J. Blood-brain barrier breakdown: an emerging biomarker of cognitive impairment in normal aging and dementia. Front Neurosci. 2021 Aug 19;15:688090. https://doi.org/10.3389/fnins.2021.688090

22. Tavassoly O, Sato T, Tavassoly I. Inhibition of brain epidermal growth factor receptor activation: a novel target in neurodegenerative diseases and brain injuries. Mol Pharmacol. 2020 Jul;98(1):13-22. https://doi.org/10.1124/mol.120.119909

23. Romano R, Bucci C. Role of EGFR in the nervous system. Cells. 2020 Aug 12;9(8):1887. https://doi.org/10.3390/cells9081887

24. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-95. https://doi.org/10.1093/nar/gkaa971

25. Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L, et al. Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database. 2010 Jul 30;2010(0):bap024- bap024. https://doi.org/10.1093/database/bap024

26. Harun S, Abdullah-Zawawi MR, A-Rahman MRA, Muhammad NAN, Mohamed-Hussein ZA. SuCComBase: a manually curated repository of plant sulfur-containing compounds. Database. 2019 Jan 1;2019: baz021. https://doi.org/10.1093/database/baz021

27. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016 Jan 4;44(D1):D1214-9. https://doi.org/10.1093/nar/gkv1031

28. Blaževi? I, Montaut S, Bur?ul F, Olsen CE, Burow M, Rollin P, et al. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry. 2020 Jan;169:112100. https://doi.org/10.1016/j.phytochem.2019.112100

29. Sterling T, Irwin JJ. ZINC 15 - Ligand discovery for everyone. J Chem Inf Model. 2015 Nov 23;55(11):2324-37. https://doi.org/10.1021/acs.jcim.5b00559

30. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011 Dec 7;3(1):33. https://doi.org/10.1186/1758-2946-3-33

31. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow G V, et al. RCSB protein data bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021 Jan 8;49(D1):D437-51. https://doi.org/10.1093/nar/gkaa1038

32. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug 26;596(7873):583-9. https://doi.org/10.1038/s41586-021-03819-2

33. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-44. https://doi.org/10.1093/nar/gkab1061

34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605-12. https://doi.org/10.1002/jcc.20084

35. Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995 Sep;91(1-3):43-56. https://doi.org/10.1016/0010-4655(95)00042-E

36. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015 Sep;1-2:19-25. https://doi.org/10.1016/j.softx.2015.06.001

37. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec 27;30(16):2785-91. https://doi.org/10.1002/jcc.21256

38. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. https://doi.org/10.1002/jcc.21334

39. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021 Aug 23;61(8):3891-8. https://doi.org/10.1021/acs.jcim.1c00203

40. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010 Mar 2;31(4):671-90. https://doi.org/10.1002/jcc.21367

41. Yu W, He X, Vanommeslaeghe K, MacKerell AD. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem. 2012 Dec 5;33(31):2451-68. https://doi.org/10.1002/jcc.23067

42. Pymol Schrodinger LLC. The PyMOL Molecular Graphics System. 2015.

43. Dassault Systèmes. BIOVIA DISCOVERY STUDIO. 2021.

44. Larrañaga O, Miranda JI, Cossío FP, Cózar A de. Alkaloids reactivity: DFT analysis of selective demethylation reactions. J Org Chem. 2018 Dec 21;83(24):15101-9. https://doi.org/10.1021/acs.joc.8b02364

45. Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. In: Medicinal plants. Cham, Swizterland: Springer International Publishing; 2019. pp. 333-59. https://doi.org/10.1007/978-3-030-31269-5_15

46. Yilmaz H, Gultekin Subasi B, Celebioglu HU, Ozdal T, Capanoglu E. Chemistry of protein-phenolic interactions toward the microbiota and microbial infections. Front Nutr. 2022 Jul 1;9:914118. https://doi.org/10.3389/fnut.2022.914118

47. Walter J, Fluhrer R, Hartung B, Willem M, Kaether C, Capell A, et al. Phosphorylation regulates intracellular trafficking of β-secretase. J Biol Chem. 2001 Jan;276(18):14634-41. https://doi.org/10.1074/jbc.M011116200

48. Zou Y, Li L, Chen W, Chen T, Ma L, Wang X, et al. Virtual screening and structure-based discovery of indole acylguanidines as potent β-secretase (BACE1) inhibitors. Molecules. 2013 May 16;18(5):5706-22. https://doi.org/10.3390/molecules18055706

49. Hong L, Koelsch G, Lin X, Wu S, Terzyan S, Ghosh AK, et al. Structure of the protease domain of memapsin 2 (β-Secretase) complexed with inhibitor. Science (1979). 2000 Oct 6;290(5489):150-3. https://doi.org/10.1126/science.290.5489.150

50. Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, et al. Dioscin alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother. 2022 Aug;152:113248. https://doi.org/10.1016/j.biopha.2022.113248

51. Wang Y, Wach JY, Sheehan P, Zhong C, Zhan C, Harris R, et al. Diversity-oriented synthesis as a strategy for fragment evolution against GSK3β. ACS Med Chem Lett. 2016 Sep 8;7(9):852-6. https://doi.org/10.1021/acsmedchemlett.6b00230

52. Lee Y, Yoon SB, Hong H, Kim HY, Jung D, Moon BS, et al. Discovery of GSK3β inhibitors through in silico prediction-and-experiment cycling strategy, and biological evaluation. Molecules. 2022 Jun 14;27(12):3825. https://doi.org/10.3390/molecules27123825

53. de Souza Gonçalves B, de Moura Valadares JM, Alves SLG, Silva SC, Rangel LP, Cortes VF, et al. Evaluation of neuroprotective activity of digoxin and semisynthetic derivatives against partial chemical ischemia. J Cell Biochem. 2019 Oct 16;120(10):17108-22. https://doi.org/10.1002/jcb.28971

54. Bartolini D, De Franco F, Torquato P, Marinelli R, Cerra B, Ronchetti R, et al. Garcinoic acid is a natural and selective agonist of pregnane X receptor. J Med Chem. 2020 Apr 9;63(7):3701-12. https://doi.org/10.1021/acs.jmedchem.0c00012

55. Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002 Nov;277(48):46265-72. https://doi.org/10.1074/jbc.M207135200

56. Mansour HM, Fawzy HM, El-Khatib AS, Khattab MM. Potential repositioning of anti-cancer EGFR inhibitors in Alzheimer's disease: current perspectives and challenging prospects. Neuroscience. 2021 Aug;469:191-6. https://doi.org/10.1016/j.neuroscience.2021.06.013

57. Maurya SK, Periasamy M, Bal NC. High gender -specific susceptibility to curare- a neuromuscular blocking agent. Biol Res. 2013;46(1):75-8. https://doi.org/10.4067/S0716-97602013000100011

58. Lin CH, Lane HY. Plasma glutathione levels decreased with cognitive decline among people with mild cognitive impairment (MCI): a two-year prospective study. Antioxidants. 2021 Nov 19;10(11):1839. https://doi.org/10.3390/antiox10111839

59. Singh H, Sodhi RK, Chahal SK, Madan J. Meclizine ameliorates memory deficits in streptozotocin-induced experimental dementia in mice: role of nuclear pregnane X receptors. Can J Physiol Pharmacol. 2020 Jun;98(6):383-90. https://doi.org/10.1139/cjpp-2019-0421

Article Metrics
49 Views 29 Downloads 78 Total

Year

Month

Related Search

By author names